next up previous contents
Next: Training Up: The Self-Organizing Map Previous: Structure



In the basic SOM algorithm, the topological relations and the number of neurons are fixed from the beginning. The number of neurons should usually be selected as big as possible, with the neighborhood size controlling the smoothness and generalization of the mapping. The mapping does not considerably suffer even when the number of neurons exceeds the number of input vectors, if only the neighborhood size is selected appropriately. However, as the size of the map increases e.g. to tens of thousands of neurons the training phase becomes computationally impractically heavy for most applications.

Before the training phase initial values are given to the weight vectors. The SOM is robust regarding the initialization, but properly accomplished it allows the algorithm to converge faster to a good solution. Typically one of the three following initialization procedures is used:

Juha Vesanto
Tue May 27 12:40:37 EET DST 1997