T-61.281 Luonnollisten kielten tilastollinen käsittely
Vastaukset 5, ti 25.2.2003, 16:15-18:00 N-grammikielimallit, Versio 1.0
|
Tarkemmalla tukimisilla huomataan, että taulukossa ihmisen antamat trigrammiestimaatit ovat jonkin verran pielessä ja tilastolliset pehmentämättömät trigrammiestimaatit aivan pielessä.
Tilastollisten estimaattien laskuun käytettiin n. 30 miljoonan sanan aineistoa. Tässä aineistossa ei yksikään annetuista taivutetuista trigrammeista esiintynyt kertaakaan. Trigrammit perusmuotoistamalla löydettiin 11 lausetta, joissa esiintyi ``tuntua jo hyvä''. Estimaatti kaipaa siis selvästi tasoittamista, eikä senkään jälkeen ole kovin luotettava.
Myös esimerkki-ihmisen antama estimaatti on hieman pielessä, aivan mahdolisesille lauseille on asetettu nollatodennäköisyys, esim. ``Kyllä alkaa tuntumaan jo kumisaapas jalassa'', lause joka voidaan tokaista vaikka pitkän vaelluksen päätteeksi.
Kun testihenkilölle annettiin koko lause nähtäväksi, saatiin jo varsin laadukkaat estimaatit. Jotta tilastollisesti pystyttäisiin pääsemään samaan tulokseen, tarvitsisi mallin ymmärtää suomen kielen syntaksia (miten sanoja voidaan taivuttaa ja laittaa peräkkäin) sekä myös sanojen semanttista merkitystä (``helmikuu'' on lopputalvea, melkein kevättä).
Unigrammit
alkuperäinen 1 aloittaa 1 alun, 1 antaa 3 arvioida 2 ei 1 erilainen 1 estimaatti 3 helmikuu 1 hyvä 2 ihminen 1 ilma 1 ja 2 jatkosana 1 jo 2 joka 1 jolloin 1 jotta 1 järjestys 1 kannattaa 1 kertyä 1 kevät 1 kielioppiaineisto 1 kielioppimalli 1 kohta 2 koira 1 koko 1 konteksti 1 kumisaapas 1 kumpi 1 kurkkia 1 kuu 1 kääntöpuoli 1 laskea 1 lause 2 leuto 1 löytyä 1 mahdollinen 1 mennä 1 mikä 1 nyt 1 oikea 1 olla 5 paperi 1 peruste 1 pystyä 1 päihtyä 1 saada 1 sana 5 se 2 seuraava 2 soidinmeno 1 suorituskyky 1 sää 1 tarvita 1 tasoittamaton 1 tehdä 1 tehtävä 2 tiainen 1 tieto 2 tietää 1 todennäköisyys 3 tuntumaa 2 turha 1 turku 1 tämä 2 uudestaan 1 vaikuttaa 1 vastata 1 verrata 1 x 1 öljyinen 1 |
Bigrammit
alkuperäinen lause 1 aloittaa tiainen 1 alun, joka 1 antaa estimaatti 1 antaa hyvä 1 antaa sana 1 arvioida nyt 1 arvioida sana 1 ei vaikuttaa 1 erilainen tieto 1 estimaatti ei 1 estimaatti kielioppiaineisto 1 estimaatti kumpi 1 helmikuu tuntumaa 1 hyvä kumisaapas 1 hyvä todennäköisyys 1 ihminen suorituskyky 1 ilma päihtyä 1 ja hyvä 1 ja soidinmeno 1 jatkosana olla 1 jo seuraava 1 jo x 1 joka olla 1 jolloin estimaatti 1 jotta se 1 järjestys kurkkia 1 kannattaa tehdä 1 kertyä tieto 1 kevät ilma 1 kielioppiaineisto laskea 1 kielioppimalli tarvita 1 kohta alkuperäinen 1 kohta jolloin 1 koira öljyinen 1 koko lause 1 konteksti peruste 1 kumisaapas kevät 1 kumpi antaa 1 kurkkia seuraava 1 kuu se 1 laskea tasoittamaton 1 lause alun, 1 lause olla 1 leuto sää 1 löytyä paperi 1 mahdollinen jatkosana 1 mennä kertyä 1 mikä erilainen 1 nyt tämä 1 oikea sana 1 olla arvioida 1 olla ja 1 olla leuto 1 olla saada 1 olla sana 1 paperi kääntöpuoli 1 peruste uudestaan 1 pystyä vastata 1 päihtyä turha 1 saada helmikuu 1 sana löytyä 1 sana tietää 1 sana todennäköisyys 2 sana tuntumaa 1 se mennä 1 se pystyä 1 seuraava kohta 1 seuraava sana 1 soidinmeno aloittaa 1 suorituskyky kohta 1 sää ja 1 tarvita jotta 1 tasoittamaton estimaatti 1 tehdä järjestys 1 tehtävä kannattaa 1 tehtävä olla 1 tiainen olla 1 tieto kielioppimalli 1 tieto tehtävä 1 tietää koko 1 todennäköisyys mahdollinen 1 todennäköisyys mikä 1 todennäköisyys oikea 1 tuntumaa jo 2 turha koira 1 turku verrata 1 tämä konteksti 1 tämä tehtävä 1 uudestaan antaa 1 vaikuttaa kuu 1 vastata ihminen 1 verrata antaa 1 x arvioida 1 öljyinen turku 1 |
Trigrammit
alkuperäinen lause olla 1 aloittaa tiainen olla 1 alun, joka olla 1 antaa estimaatti kielioppiaineisto 1 antaa hyvä todennäköisyys 1 antaa sana todennäköisyys 1 arvioida nyt tämä 1 arvioida sana tuntumaa 1 ei vaikuttaa kuu 1 erilainen tieto kielioppimalli 1 estimaatti ei vaikuttaa 1 estimaatti kielioppiaineisto laskea 1 estimaatti kumpi antaa 1 helmikuu tuntumaa jo 1 hyvä kumisaapas kevät 1 hyvä todennäköisyys oikea 1 ihminen suorituskyky kohta 1 ilma päihtyä turha 1 ja hyvä kumisaapas 1 ja soidinmeno aloittaa 1 jatkosana olla ja 1 jo seuraava sana 1 jo x arvioida 1 joka olla leuto 1 jolloin estimaatti ei 1 jotta se pystyä 1 järjestys kurkkia seuraava 1 kannattaa tehdä järjestys 1 kertyä tieto tehtävä 1 kevät ilma päihtyä 1 kielioppiaineisto laskea tasoittamaton 1 kielioppimalli tarvita jotta 1 kohta alkuperäinen lause 1 kohta jolloin estimaatti 1 koira öljyinen turku 1 koko lause alun, 1 konteksti peruste uudestaan 1 kumisaapas kevät ilma 1 kumpi antaa hyvä 1 kurkkia seuraava kohta 1 kuu se mennä 1 laskea tasoittamaton estimaatti 1 lause alun, joka 1 lause olla sana 1 leuto sää ja 1 löytyä paperi kääntöpuoli 1 mahdollinen jatkosana olla 1 mennä kertyä tieto 1 mikä erilainen tieto 1 nyt tämä konteksti 1 oikea sana tietää 1 olla arvioida sana 1 olla ja hyvä 1 olla leuto sää 1 olla saada helmikuu 1 olla sana löytyä 1 peruste uudestaan antaa 1 pystyä vastata ihminen 1 päihtyä turha koira 1 saada helmikuu tuntumaa 1 sana löytyä paperi 1 sana tietää koko 1 sana todennäköisyys mahdollinen 1 sana todennäköisyys mikä 1 sana tuntumaa jo 1 se mennä kertyä 1 se pystyä vastata 1 seuraava kohta jolloin 1 seuraava sana todennäköisyys 1 soidinmeno aloittaa tiainen 1 suorituskyky kohta alkuperäinen 1 sää ja soidinmeno 1 tarvita jotta se 1 tasoittamaton estimaatti kumpi 1 tehdä järjestys kurkkia 1 tehtävä kannattaa tehdä 1 tehtävä olla arvioida 1 tiainen olla saada 1 tieto kielioppimalli tarvita 1 tieto tehtävä olla 1 tietää koko lause 1 todennäköisyys mahdollinen jatkosana 1 todennäköisyys mikä erilainen 1 todennäköisyys oikea sana 1 tuntumaa jo seuraava 1 tuntumaa jo x 1 turha koira öljyinen 1 turku verrata antaa 1 tämä konteksti peruste 1 tämä tehtävä kannattaa 1 uudestaan antaa sana 1 vaikuttaa kuu se 1 vastata ihminen suorituskyky 1 verrata antaa estimaatti 1 x arvioida nyt 1 öljyinen turku verrata 1 |
Tasoittamattomat estimaatit saadaan suoraan laskemalla kunkin n-grammin osuus kaikista havaituista n-grammeista:
![]() |
(1) |
Tämä estimaatti asettaa nollatodennäköisyyden kaikille
havaitsemattomille n-grammeille. Mallin antamat estimaatit on annettu
taulukossa 2.
|
![]() |
(2) |
Taulukossa 3 on esitetty tulokset niin, että vasempaan
sarakkeen on merkattu kuinka monta kertaa n-grammi esiintyi tekstissä ja
seuraaviin sarakkeisiin vastaavat todennäköisyysestimaatit.
|
![]() |
(3) |
|
Katsotaanpa vielä, kuinka paljon kukin malli sijoitti
todennäköisyysmassa havaitsemattomille näytteille (taulukko
5). Huomataan, että näin pienellä opetusjoukolla Laplace
sijoittaa lähes kaiken todennäköisyysmassan tuntemattomille
näytteille. Lidstonen painokertoimella saadaan säädettyä,
kuinka paljon se laittaa todennäköisyyttä tuntemattomille, mutta jos
pistetään kovin pieneksi (kuten tässä tehtiin), malli tuskin
toimii kovin hyvin testiaineistolla.
![]() |
(5) |
Good-Turing -tasoitusta voi intuitiivisesti ajatella vaikka niin,
että kuvitellaan kaikkia yksiköitä nähdyksi hieman vähemmän kertoja
kuin ne oikeasti nähtiin. Eli jos trigrammi nähtiin 10 kertaa,
leikitään että se nähtiinkin vain 9.1 kerran. Jos trigrammi nähtiin
kerran, leikitään että se nähtiin 0.5 kertaa. Oletetaan että on
olemassa trigrammia, joita ei nähty ja leikitään, että ne nähtiin
0.3 kertaa. Tämä ei tietysti ole matemaattisiseti aivan eksakti
määritelmä, mutta helpottaa ehkä tehtävän seuraamista.
Good-Turing -tasoituksen laskeminen aloitetaan taulukoimalla, kuinka
monta kertaa eri trigrammia on nähty kertaa (esim. aineistossa oli
7462 trigrammia, jotka kaikki esiintyivät 10 kertaa). Tästä taulukosta
on piiretty kuvaaja 1.
Huomataan, että tähän käyrään olisi helppo sijoittaa suora viiva,
paitsi että suuremmilla frekvensseillä tapahtuu jotain kummaa:
trigrammeja, joita on esiintynyt vaikkapa 500 kertaa on joko 0 tai 1
kappale. Eli lopussa ei ole enää tasaista käyrää, vaan vain
diskreettejä arvoja 0 ja 1. Kokeillaan tasoitella käyrän loppupäätä
levittämällä todennäköisyysmassaa tasaisesti koko ympäristöön. Esim.
jos trigrammi on esiintynyt 510 kertaa, mutta seuraavaksi yleisin
trigrammi on esiintynyt 514 kertaa, jaetaan tuo 1 koko välille, eli
kaikille frekvensseille 510-514 tulee arvoksi
.
Katsotaan, miltä kuvaaja näyttää tämän jälkeen.
Kuvassa 2 nähdään tasoitettu data ja siihen sovitettu
suora. Suora sovitettiin kummankin muuttujan logaritmeihin, jolloin se
saatiin kauniisti myötäilemään datan muotoa.
Matalat :n arvot ovat paremmin arvioidut koska niihin meillä on
ollu paljon dataa. Käytetään siis niiden arvioina suoraan taulukossa
olleita arvoja ja katsotaan korkeat
:n arvot suoraan
käyrältä. Tässä tehtävässä päätin käyttää suoralta luettuja arvoja,
kun
.
Vielä pitäisi antaa jonkinverran todennäköisyysmassa trigrammeille,
joita ei ole vielä nähty. Good-Turing estimaatissa näille annetaan
yhteensä
todennäköisyyttä. Tämä todennäköisyys
voitaisiin jakaa vaikkapa aineistosta opetetulle bigrammimallille.
Nyt, jos trigrammimalli ei osaa antaa sanalle todennäköisyyttä,
voidaan tätä todennäköisyyttä kysyä bigrammimallilta. Tuntemattomille
bigrammeille jäävä todennäköisyysmassa voitaisiin taas puolestaan
jakaa unigrammimallille. Tuntemattomille unigrammeille jäävästä
todennäköisyydestä voidaan vain todeta, että tässä on todennäköisyys,
että tulee vastaan sana, jota malli ei tunne. Tällainen perääntyvä
(back-off) kielimalli on käytössä esim. lähes kaikissa suuren sanaston
puheentunnistimissa. Tässä esitettiin vain perusidea perääntyvien
kielimallejen estimoinnille. Käytännössä se ei ole aivan näin
suoraviivaista.
Kun nyt laskemme korjatulla :llä kaavan 4 mukaan
todennäköisyydet saamme melko estimaatit eri sanojen
todennäköisyyksille. Taulukkoon 6 on merkitty
muutamalle eri r:lle todennäköisyydet. Opetetun mallin mielestä 81%
todennäköisyydestä on tuntemattomilla trigrammeilla. Tämä on suomen
kielelle melko uskottavan kuuloinen tulos, sillä suomen kielen
sanamäärä on niin suuri, että kielelle on käytännössä mahdotonta tehdä
kattavaa trigrammimallia. Sivuhuomatuksena mainittakoon, että
trigrammimallinnus voi soveltaa suomen kieleen myös hajoittamalla
sanat vaikkapa morfeemeiksi ja opettamalla trigrammimalli näiden
pienempien palojen yli.
![]() |
![]() |
![]() |
|
![]() |
![]() |
||
![]() |
![]() |
Lasketaan summa erikseen:
![]() |
|||
![]() |
![]() |
||
![]() |
|||
![]() |
![]() |
Sijoitetaan vielä luvut hämmentyneisyyden lausekkeeseen
![]() |
Sana 'tapahtumaketju' ei ollut 64000 yleisimmän sanan joukossa ja ei
sisältynyt siis kielimalliin. Kielimallin ohi meni siis
sanoista.