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Abstract

In image compression and feature extraction, linear expansions are standardly used.

It was pointed out by Lee and Seung that the positivity or non-negativity of a linear

expansion is a very powerful constraint, that seems to lead to sparse representations

for the images. Their technique, called Non-negative Matrix Factorization (NMF),

was shown to be useful in approximating high dimensional data where the data are

comprised of non-negative components. We have earlier proposed a new variant of

the NMF method, called Projective Nonnegative Matrix Factorization, for learning

spatially localized, sparse, part-based subspace representations of visual patterns. The

algorithm is based on positively constrained projections and is related both to NMF

and to the conventional SVD or PCA decomposition. In this paper we show that

PNMF is intimately related to ”soft” k-means clustering and is able to outperform

NMF in document classification tasks. The reason is that PNMF derives bases which

are somewhat better for a localized representation than NMF, more orthogonal, and

produce considerably more sparse representations.

Keywords Projective Nonnegative Matrix Factorization · Sparseness ·Orthogonality ·

Clustering

1 Introduction

For compressing, denoising and feature extraction of data sets such as digital image col-

lections, term-document matrixes for text, spectra, etc., one of the classical approaches

is Principal Component Analysis (PCA). In PCA or the related Singular Value Decom-

position (SVD) [3], each data vector is projected on the eigenvectors of the covariance

matrix, each of which provides one linear feature. The representation of data in this

basis is distributed in the sense that typically all the features are used at least to some

extent in the reconstruction.
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Another possibility is a sparse representation, in which any given data item is

spanned by just a small subset of the available features [1,9,11,15,20]. It was shown

by Lee and Seung [12] that positivity or non-negativity of a linear expansion is a very

powerful constraint that seems to yield sparse representations. Their technique, called

Non-negative Matrix Factorization (NMF), was shown to be a useful technique in

approximating high dimensional data where the data are comprised of non-negative

components. The authors proposed the idea of using NMF techniques to find a set of

basis functions to represent image data, where the basis functions enable the identi-

fication and classification of intrinsic “parts” that make up the object being imaged

by multiple observations. NMF imposes the non-negativity constraints in learning the

basis images. Both the values of the basis images and the coefficients for reconstruction

are all non-negative and separately learned in an iterative process. The additive prop-

erty ensures that the components are combined to form a whole in the non-negative

way, which has been shown to lead to the part-based representation of the original

data. However, the additive parts learned by NMF are not necessarily localized.

NMF has been typically applied to image and text data [7,16], but has also been

used to deconstruct music tones [18,19] and for spectral data analysis [17]. The close

relation of NMF to clustering has been shown by Ding et al [4]. For recent developments

in NMF, see [2] and references therein.

In [23], starting from the ideas of SVD and NMF, we proposed a novel method which

we call Projective Non-negative Matrix Factorization (PNMF), for learning spatially

localized, parts-based representations of visual patterns. PNMF uses only one non-

negative matrix in the expansion, instead of the two matrices used in NMF, and thus

has much less free parameters to be learned. Learning rules were given and it was shown

that for face images, PNMF produces spatially more localized and non-overlapping

basic components than NMF. One reason for this turned out to be that the basic

vectors of PNMF are clearly more orthogonal than those of NMF [21]. More thorough

analysis of the learning rules was also given in [21,22].

The present paper gives several extensions to the basic ideas. First, in Section

2, we take a look at a very simple way to produce a positive SVD by truncating

away negative parts, which may serve as the initial point for the new PNMF learning

algorithm. Section 3 briefly reviews Lee’s and Seung’s NMF. Using this as a baseline,

we briefly review our PNMF method in Section 4. Section 5 shows that PNMF is

even more closely related to clustering than NMF: one of the cost functions of PNMF

is in fact exactly equal to the usual cost function of k-means clustering, except for

the constraints that are used in both. Results on document data clustering are given,

showing that in these experiments PNMF indeed gives somewhat better accuracy and

entropy than NMF and the classical k-means clustering. Section 6 gives experimental

results on the sparseness and orthogonality of PNMF basis functions, and Section 7

concludes the paper.

2 Truncated Singular Value Decomposition

Suppose that our data1 is given in the form of an m× n matrix V. Its n columns are

the data items, for example, a set of images that have been vectorized by row-by-row

scanning. Then m is the number of pixels in any given image. Typically, n > m. The

1 For clarity, we use here the same notation as in the original NMF theory by Lee and Seung



3

Singular Value Decomposition (SVD) for matrix V is

V = QDR
T , (1)

where Q (m×m) and R (n×m) are orthogonal matrices2 consisting of the eigenvectors

of VVT and VT V, respectively, and D is a diagonal m×m matrix where the diagonal

elements are the ordered singular values of V.

Choosing the r largest singular values of matrix V to form a new diagonal r × r

matrix D̂, with r < m, we get the compressive SVD matrix U with given rank r,

U = Q̂D̂R̂
T . (2)

Now both eigenvector matrices Q̂ and R̂ have only r columns, corresponding to the r

largest eigenvalues. The compressive SVD gives the best approximation (in Frobenius

matrix norm) of the matrix V with the given compressive rank r [6].

In the case that we consider here, all the elements of the data matrix V are non-

negative. Then the above compressive SVD matrix U fails to keep the nonnegative

property. In order to further approximate it by a non-negative matrix, the following

truncated SVD (tSVD) is suggested. We simply truncate away the negative elements

by

Û =
1

2
(U + abs(U)) (3)

where the absolute value is taken element by element.

However, it turns out that typically the matrix Û in (3) has higher rank than U.

Truncation destroys the linear dependences that are the reason for the low rank. In

order to get an equal rank, we have to start from a compressive SVD matrix U with

lower rank than the given r. To find the truncated matrix Û with the compressive rank

r, we search all the compressive SVD matrices U with the rank from 1 to r and form

the corresponding truncated matrices. The one with the largest rank that is less than

or equal to the given rank r is the truncated matrix Û what we choose as the final

non-negative approximation. This matrix can be used as a baseline in comparisons,

and also as a starting point in iterative improvements. We call this method truncated

SVD (tSVD).

Note that the tSVD only produces the non-negative low-rank approximation Û

to the data matrix V, but does not give a separable expansion for basis vectors and

weights, like the usual SVD expansion.

3 Non-negative Matrix Factorization

Given the nonnegative m × n matrix V and the constant r, the Nonnegative Matrix

Factorization algorithm (NMF) [12] finds a nonnegative m× r matrix W and another

nonnegative r×n matrix H such that they minimize the following optimality problem:

min
W,H≥0

||V −WH||. (4)

This can be interpreted as follows: each column of matrix W contains a basis vector

while each column of H contains the weights needed to approximate the corresponding

column in V using those basis vectors.

2 In the usual definition of SVD, R is a full n×n matrix, but the result is the same as there
are only m nonzero eigenvectors
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In order to estimate the factorization matrices, an objective function defined in [12]

is the Kullback-Leibler divergence

F =

m
∑

i=1

n
∑

µ=1

[Viµ log(WH)iµ − (WH)iµ]. (5)

This objective function can be related to the likelihood of generating the images in

V from the basis W and encodings H. An iterative approach to reach a local maximum

of this objective function is given by the following rules [12,13]:

Wia ←Wia

∑

µ

Viµ

(WH)iµ
Haµ,Wia ←

Wia
∑

j
Wja

(6)

Haµ ← Haµ

∑

i

Wia
Viµ

(WH)iµ
. (7)

The convergence of the process is ensured. The initialization is performed using

positive random initial conditions for matrices W and H.

4 The Projective NMF method

4.1 Definition of the problem

In NMF, the two matrices W and H contain a total of r×(m+n) free parameters. This

gives a certain ambiguity to the problem. For example, consider the simplest possible

case in which V and W are just column vectors and H = H is a scalar: obviously there

are an infinite number of solutions W = 1
H V with H arbitrary.

In [23] we presented a modification of NMF that contains only r×m free parameters.

Thus, the number of parameters is always less than or equal to the number of elements

in the data matrix V. The modification is based on an approximative projection. As the

starting point, consider the compressive SVD which is a projection method. It projects

the nonnegative m× n data matrix V onto the subspace of the first r eigenvectors of

the data covariance matrix – formally, eqs. (1) and (2) give

U = Q̂Q̂
T
V.

Matrix Q̂Q̂T is the projection matrix on the eigenvector subspace. This is the uncon-

strained optimal approximation to V in the space of rank r matrices: :

||V − Q̂Q̂
T
V|| = minimum. (8)

Generally, matrix Q̂ is not nonnegative.

To improve on this, let us try to find a nonnegative m×m approximative projection

matrix P with given rank r, which minimizes the difference ||V−PV||. We can write

any symmetrical projection matrix of rank r in the form

P = WW
T (9)

with W an orthogonal (m× r) matrix3.

3 This is just notation for a generic basis matrix; the solution will not be the same as the
W matrix in NMF.
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Based on this, we introduced [23] a novel method which we call Projective Non-

negative Matrix Factorization (PNMF) as the solution to the following optimality prob-

lem

min
W≥0

||V −WW
T
V||, (10)

where || · || is a matrix norm.

The most useful norm is the Euclidean distance between two matrices A and B,

or the Frobenius matrix norm of their difference:

||A−B||2 =
∑

i,j

(Aij −Bij)
2. (11)

Another possibility that will be considered, in analogy with NMF, is the divergence4

of matrix A from B, defined as

D(A||B) =
∑

i,j

(Aij log
Aij

Bij
−Aij + Bij). (12)

Both Euclidean distance and divergence are lower bounded by zero, and vanish if and

only if A = B.

The PNMF method seems to offer some advantages as compared to NMF. The first

one is increased orthogonality of the basis vectors. This is due to the similarity of the

criterion (10) to SVD. Removing the positivity constraint but keeping the rank con-

straint, an orthogonal eigenvector basis is the solution. For positive bases, orthogonality

is intimately connected to sparseness.

Second, consider the case in which the V matrix is just a training set and the goal

is to find the representation not only for the columns of V but for new vectors, too.

For PNMF, the representation for any column of V, say v, is simply WWT v and

that can be easily computed for a new vector, too. In NMF, there is no such natural

representation because both W and H are needed, and matrix H has only n columns.

The extra column in H would have to be recomputed from the criterion.

Third, as pointed out by [4,14], NMF has a close relation to clustering. The relation

of PNMF to clustering is even closer, as shown below in Section 5. It turns out that

PNMF provides a novel way to perform “soft” k-means clustering on a dataset.

4.2 Learning algorithms

We first consider the Euclidean distance (11). Define the function

F(W) =
1

2
||V −WW

T
V||2. (13)

Before developing the algorithm, we need the following lemma.

Lemma 1 For the given matrices W and V, the minimization of f(λ) = ||V −

λWWT V||2 corresponding to λ is reached at

λ =
trace[WWT VVT ]

trace[WWT VVT WWT ]
. (14)

4 Formally, this is not a norm or metric
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Proof. By setting
∂f(λ)

∂λ
= 0:

∂f(λ)

∂λ
= trace[WW

T
VV

T ]− λtrace[WW
T
VV

T
WW

T ], (15)

we obtain

λ =
trace[WWT VVT ]

trace[WWT VVT WWT ]
. (16)

Let us now calculate the unconstrained gradient of F for W, ∂F

∂wij
, which is given

by

∂F

∂wij
= −2(VV

T
W)ij + (WW

T
VV

T
W)ij + (VV

T
WW

T
W)ij . (17)

Using the gradient we can construct the additive update rule for minimization,

Wij ←Wij − ηij
∂F

∂wij
(18)

where ηij is the positive step size.

However, there is nothing to guarantee that the elements Wij would stay non-

negative. In order to ensure this, we choose the step size as follows,

ηij =
Wij

(WWT VVT W)ij + (VVT WWT W)ij
. (19)

Then the additive update rule (18) can be formulated as a multiplicative update rule,

Wij ←Wij
2(VVT W)ij

(WWT VVTW)ij + (VVT WWT W)ij
. (20)

and followed by normalizing the above updated matrix W to keep the basis vectors

close to the unit sphere.

W←W
√

trace[WWT VVT ]/trace[WWT VVT WWT ]. (21)

Now it is guaranteed that the Wij will stay nonnegative, as everything on the

right-hand side is nonnegative. It is worth to notice that when the matrix W is a

vector, then the equation (21) is the general normanization.

For the divergence measure (12), we follow the same process.

Lemma 2 For the given matrices W and V, the minimization of f(λ) = D(V||λWWT V)

corresponding to λ is reached at

λ =

∑

ij
Vij

∑

ij
(WWT V)ij

. (22)
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Proof. Again, by setting
∂f(λ)

∂λ
= 0:

∂f(λ)

∂λ
=
∑

ij

(WW
T
V)ij −

∑

ij

Vij/λ = 0, (23)

the lemma is proven.

The gradient of D(V||WWT V) to W is

∂D(V||WWT V)

∂wij
=
∑

k

(

(WT
V)jk +

∑

l

WljVik

)

(24)

−
∑

k

Vik(WT
V)jk/(WW

T
V)ik (25)

−
∑

k

Vik

∑

l

WljVlk/(WW
T
V)lk. (26)

Using the gradient, the additive update rule becomes

Wij ←Wij − ζij
∂D(V||WWT V)

∂wij
(27)

where ζij is the step size. Choosing this step size as follows:

ζij =
Wij

∑

k

(

(WT V)jk +
∑

l
WljVik

) . (28)

we obtain the multiplicative update rule

Wij ←Wij

∑

k
Vik

(

(WT V)jk/(WWT V)ik +
∑

l
WljVlk/(WWT V)lk

)

∑

k

(

(WT V)jk +
∑

l
WljVik

) , (29)

followed by ”normalizing” the above updated matrix W

W←W

√

∑

ij
Vij

∑

ij
(WWT V)ij

. (30)

It is easy to see that both multiplicative update rules (20) and (29) will ensure that

the matrix W is non-negative. The convergence of the two algorithms is complicated,

and the full proof has not been done, yet.

4.3 The relationship between NMF and PNMF

There is a very obvious relationship between our PNMF algorithms and the original

NMF. Comparing the two optimality problems, PNMF (10) and the original NMF (4),

we see that the weight matrix H in NMF is simply replaced by WT V in our algorithms.

Both multiplicative update rules (20) and (29) are similar to Lee and Seung’s algorithms

[13]. The number of free parameters is much smaller in PNMF.
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4.4 The relationship between SVD and PNMF

There is also a relationship between the PNMF algorithm and the SVD. For the Eu-

clidean norm, note the similarity of the problem (10) with the conventional PCA for

the columns of V. Removing the positivity constraint, this would become the usual

finite-sample PCA problem, whose solution is known to be an orthogonal matrix con-

sisting of the eigenvectors of VVT . But this is the matrix Q in the SVD of eq. (1).

However, now with the positivity constraint in place, the solution will be something

quite different.

5 Relation to k-means clustering

It is well-known that k-means clustering is related to nonnegative factorizations [4].

Assume we want to cluster a set of n-dimensional vectors x1, ..., xm into k clusters

C1, ..., Ck. The classical k-means clustering uses k cluster centroids m1, ..., mk to char-

acterize the clusters. The objective function is

Jk =

k
∑

j=1

∑

i∈Cj

‖xi −mj‖
2. (31)

As shown by Ding et al [4,14], this can be written as

Jk = trace[XT
X]− trace[HT

X
T
XH] (32)

with X = (x1, , ,xm) the data matrix, and H the indicator matrix for the clusters:

Hij = 1 if vector xi belongs to cluster Cj , zero otherwise. Thus H is a binary (m× k)

matrix, whose columns are orthogonal, because each vector belongs to one and only

one cluster. Minimizing Jk under the binary and orthogonality constraints on H is

equivalent to maximizing trace[HT XT XH] under these constraints.

The PNMF has a direct relation to this. Consider the PNMF criterion for the

transposed data matrix XT :

‖XT −WW
T
X

T ‖2 = trace[(XT −WW
T
X

T )(X−XWW
T )] (33)

= trace[XT
X] − 2trace[WT

X
T
XW] + trace[WW

T
X

T
XWW

T ]. (34)

Assuming that the columns of W were orthonormal, i.e., WT W = I, the last term

becomes trace[WT XT XW] and the whole PNMF criterion becomes exactly equal to

the k-means criterion Jk in eq. (32), except for the binary constraint.

PNMF can thus be used for clustering the columns of a data matrix X in the

following way: apply PNMF for the transposed matrix XT (which is now (m × n)

like in the original formulation of PNMF) under the usual non-negativity constraint

and obtain the weight matrix W. The rank r of W should be set equal to k, the

desired number of clusters. If necessary, the columns of W may be normalized to

unit length. As the analysis above shows, W is then an approximation of the cluster

indicator matrix, whose m rows correspond to the m data vectors to be clustered, and

k columns correspond to the k clusters: the elements Wij , j = 1, ..., k along the i-th

row show a “soft” clustering of the i-th data vector into the clusters Cj , j = 1, ..., k.

Correspondingly, the same elements along the j-th column show the degrees by which

each of the data vectors belongs to the j-th cluster Cj . Because of the constraint, all
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these degrees are non-negative. If a unique “hard” clustering is desired, the maximum

element on each row can be chosen to indicate the cluster.

Also the matrix XW whose transpose WT XT appears in (33) has a very clear

interpretation: its columns directly give the “soft” cluster centroids m1, ..., mk. Namely,

the j-th column of XW equals
∑m

i=1 Wijxi, thus giving the weighted average of the

data vectors, weighted according to how much they belong to cluster Cj . If the elements

were binary as is the case in the hard k-means clustering, then these columns would

be exactly the cluster centroids mj . In the “soft” clustering given by PNMF, they are

still the optimal cluster mean vectors.

For this clustering scheme to be valid, an essential question is how good an approx-

imation W will be to the binary indicator matrix H, given that the constraint used

in PNMF is just the non-negativity of W. This is where the sparsity and the good

orthogonality properties of W may come into play. As shown in Section 6.2, PNMF is

able to produce a clearly more orthogonal matrix than NMF (see Figure 3), and thus

can be expected to produce a better clustering result than NMF or its variants. Some

experimental clustering results are given in the following.

6 Simulations

6.1 Document clustering

We use three datasets: 20 Newsgroups dataset, MEDLINE dataset and Reuters in our

experiments. They are frequently used in the information retrieval research.

MEDLINE consists of 1033 abstracts from medical journals. In the MEDLINE

dataset, there are 30 natural language queries and relations giving relevance judgements

between query and document. We prepared a term-document matrix of size 5735×696

since only 696 documents among the 1033 documents have matched with the 30 queries.

The 20 Newsgroups data set is a collection of 20000 messages taken from 20 newsgroups.

We use a subset of the Newsgroup data which contains 100 randomly selected messages

from each newsgroup. The Reuters-21578 Text Categorization Test Collection contains

documents collected from the Reuters newswire in 1987. In our experiments, we use a

subset of the data collection which includes the 10 most frequent categories among the

135 topics and has about 2900 documents.

To measure the clustering performance, we use accuracy and entropy as our per-

formance measures as defined in [5]. In these experiments, binary clustering is used,

achieved by locating the maximum elements of the basis matrix W. Accuracy discov-

ers the one-to-one relationship between clusters and classes and measures the extent

to which each cluster contained data points from the corresponding class. It sums up

the whole matching degree between all pairs of classes and clusters. Accuracy can be

represented as:

Accuracy = max





∑

i,j

T (Ci, Lj)



 /N (35)

where Ci is the i-th cluster, and Lj is the j-th class. T (Ci, Lj) is the number of entities

which belong to class j and are assigned to cluster i. Accuracy computes the maximum

sum of T (Ci, Lj) for all pairs of clusters and classes, and these pairs have no overlaps.

Generally, the greater the accuracy value, the better the clustering performance.
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Entropy measures how classes are distributed on various clusters. Generally, the

smaller the entropy value, the better the clustering quality. Following [5], the entropy

of the entire clustering solution is computed as:

Entropy = −
1

n log2 m

k
∑

i=1

c
∑

j=1

ni
i log2

nj
i

ni
(36)

where c is the number of original categories, k is the number of clusters, ni is the size

of cluster i, and nj
i gives the number of points in cluster j that belong to the i-th

category. Generally, the smaller the entropy value, the better the clustering quality.

For each of the three datasets we run k-means clustering, NMF and PNMF for

a comparison. The clustering solutions of NMF and PNMF are compared based on

accuracy and entropy as shown in Figs. 1 and 2.

Fig. 1 Accuracies of K-means, NMF and PNMF.

Fig. 2 Entropies of K-means, NMF and PNMF.

Figure 1 shows that NMF and PNMF have similar performance on accuracy, and

Figure 2 shows that PNMF has lower entropy value than NMF which means it has

better clustering quality.
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6.2 Facial image data: orthogonality and sparseness

In this experiment, we employed Lee’s NMF algorithm [12], Hoyer’s NNSC [8] algorithm

and our PNMF methods for image compression, comparing their performance with

respect to sparseness and orthogonality. We used face images from the MIT-CBCL

database as experimental data, and derived the NMF, NNSC and PNMF expansions

for them. The training data set contains 2429 faces. Each face has 19×19 = 361 pixels

and has been histogram-equalized and normalized so that all pixel values are between

0 and 1. Thus the data matrix V which now has the faces as columns is 361 × 2429.

This matrix was compressed to rank r = 49 using either tSVD, NMF, NNSC or PNMF

expansions. The visual results have been shown in our previous papers [23,21]. Here, we

will give some quantitative analysis on the localization and sparseness. Define entropy

for each of the 49 normalized columns of the basis matrix W (the basis images) as

enj = −

361
∑

1

Wij log Wij ,

361
∑

1

Wij = 1, (37)

then calculate the average of entropies over the 49 basis images. Generally, a smaller

entropy value shows more localization and sparseness. Computing the average entropies

of the basis images derived by NMF, NNSC, tSVD, and PNMF with Euclidean and

divergence measures, gives the values 22.329, 22.671, 54.528, 8.5179 and 7.3534, re-

spectively. Thus the two versions of PNMF have clearly the smallest entropy, hence

sparseness for the basis images.

Another way to measure the sparseness is the orthogonality of the basis vectors,

since two nonnegative vectors are orthogonal if and only if they do not have the same

non-zero elements. Therefore the orthogonality between the learned bases reveals the

sparsity of the resulting representations, and the amount of localization for facial im-

ages. We measure the orthogonality of the learned bases by the following

ρ = ||WT
W − I||, (38)

where || · || refers to the Euclidean matrix norm. The columns of W are first normalized

to unit length, so that ρ measures the deviation of the off-diagonal elements of W from

zero. A smaller value of ρ indicates higher orthogonality and ρ equals to 0 when the

columns of W are completely orthogonal.

Figure (3, top) compares the orthogonal behavior among PNMF, NNSC and NMF

as the learning proceeds. PNMF converges to a local minimum with much lower ρ value,

that is, higher orthogonality. Figure (3, bottom) shows that PNMF is not sensitive to

the initial values.

6.3 MRI data

This data set consists of a single high-resolution anatomical volume obtained by Mag-

netic Resonance Imaging (MRI). The volume was acquired axially, with 90 horizontal

slices parallel to the line connecting the anterior and posterior commissures. The source

data matrix V has the size 65536 × 90, with the number of columns much less than

the number of rows.

Running NMF and PNMF algorithms, the bases are shown in Figure 6.3 with the

rank r = 25. Figure 6.3 shows the reconstructions of one of the images. It can be seen

that PNMF is able to bring out considerably more details.
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Fig. 3 Orthogonality versus iterative steps using NMF and PNMF with subdimension 49.
Up: PNMF and NMF. Down: PNMF with four different random seeds.

7 Conclusion

We have proposed a new variant of the well-known Non-negative Matrix Factorization

(NMF) method for learning spatially localized, sparse, part-based subspace represen-

tations of visual patterns. The algorithm, called Projective NMF (PNMF) is based on

positively constrained projections and is related both to NMF and to the conventional

SVD decomposition. Two iterative positive projection learning algorithms were sug-

gested, one based on minimizing Euclidean distance and the other one on minimizing

the divergence between the original data matrix and its approximation. Compared to

the NMF method, the iterations are somewhat simpler as only one matrix is updated

instead of two as in NMF. The number of free parameters to be determined in PNMF
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Fig. 4 NMF (left), PNMF method (right) bases of dimension 25. Each basis component
consists of 256 × 256 pixels.
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Fig. 5 The original image (left) and its reconstructions by NMF (middle) and PNMF under
100 iterative steps (right)

is much less than in NMF. The tradeoff is that the convergence, counted in iteration

steps, is slower than in NMF.

One purpose of the non-negative factorization approaches is to learn localized fea-

tures which would be suitable not only for image compression, but also for object

recognition. Experimental results on face and biomedical images show that PNMF de-

rives bases which are better suitable for a localized representation than NMF, with

considerably more orthogonal basis vectors. The orthogonality has also the benefit

that PNMF can be used for clustering in the same way as NMF. It was shown that

the PNMF Euclidean cost function has a very close relation to k-means clustering,

the difference being that PNMF produces a “soft” clustering in which the degree of

belonging to a cluster is a continuous number instead of binary. The clustering result

was experimentally shown to be somewhat better than for NMF.
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