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Introduction

» Molecular measurements of
biological organisms to study
response to:

» disease
» medical treatment
> environment

FASN Low

___FASN Moderate |

SREBP1 Low

SREBP1 Moderate |

SREBP1 Strong.|

» Measurements can be made:

> in vivo: cell extracts from
humans or model organisms

> in vitro: cell lines grown in
laboratory

PE(13:0/20:4)
PC(18:0120:4)
PE(P-16:0/20:4)
PE(18:1/18:0)
I PE(PasY)
i PEF-1G01E2)
PE(34:1)
PO(18:1/20:4)
| Po(i60/160)
[ pegsozog
PC(16:0/16:1)
PI18:0/20:4)
SM(d18:1/24:0)
PC(E2:1)
PC(18:01226)
PC(18:0/226)
PC(16:0/20:4)
PE(15:0/20:3)
PE(36:4)
PC(14:0/16:0)

Hilvo et al.,

A

OGO
A NE
ISR Qrﬁ(" &L

Cancer Res.
Fold change (log,)

Y
Nt
o

05025 0 025 05

2011



Molecular activity in biological cell
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Machine learning for computational biology

» Molecular measurements:

» Large data sets
» Uncertainty/noise

= Automated and robust data-driven analysis
tools needed

» Bayesian approach to probability:

» Take uncertainty into account

» Describe the generative process of the data
= Integration of multiple measurement

sources
» Incorporate existing knowledge
by specifying:

> the model structure
> priors

Posterior probability density

0
Covariate effect



Computational medicine & contributions

» Model organisms for studying effects of:
> genomic mutations
» new medical treatments, potentially dangerous



Computational medicine & contributions

» Model organisms for studying effects of:

> genomic mutations
» new medical treatments, potentially dangerous

» Dissertation: statistical modeling of effects in molecular measurement

data with
> high-dimensional, noisy measurements
» multiple measurement types
» multiple organisms
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Computational medicine & contributions

» Model organisms for studying effects of:

> genomic mutations

» new medical treatments, potentially dangerous

» Dissertation: statistical modeling of effects in molecular measurement

data with

> high-dimensional, noisy measurements

» multiple measurement types
» multiple organisms
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Multi-Way Model for “n < p"

covariates data space:

(1) Data:
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[P 1I-111:] Multi-Way Models for Multi-Peak Metabolomics
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Multi-Way Model for Multiple Sources

no matched variables,
. different dimensionalities

data space 1

(2)
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Cross-Organism Toxicogenomics
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— Multi-level cross-organism
drug responses
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P VI-VII: | Cross-Organism Multi-Way Model
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Summary

New machine learning models for:

P | Small sample size, high dimensionality (n < p)

P 1=l Incorporating prior information about
the measurement process

P IV-V Multiple data sources with co-occurring samples

P VI-VIlI Multiple data sources without co-occurring
samples
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