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Proposed Transformations
• Consider an MLP-network with a shortcut mapping C

yt = Af (Bxt) +Cxt + εt,

• Supplement nonlinearity with auxiliary variables αi and βi

fi(bixt) = tanh(bixt) + αibixt + βi

• Ensure that output is zero-mean and zero-slope on average

T
∑

t=1

fi(bixt) = 0
T
∑

t=1

f ′i(bixt) = 0

by setting αi and βi to

αi = −
1

T

T
∑

t=1

tanh′(bixt) βi = −
1

T

T
∑

t=1

[tanh(bixt) + αibixt]

and compensating the change by updating the shortcut mapping C

Motivation

•Transformations do not change the model, but the optimization

• Fisher information matrix is closer to a diagonal
because it contains terms with fi(·) and f ′i(·)

Gij =
∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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Error against learning time

• Test errors after 15 minutes as regularization methods are included:

regularization none weight decay PCA noise (150 minutes)
original 1.87 1.85 1.62 1.15 1.03
shortcuts 2.02 1.77 1.59 1.23 1.17
transform. 1.63 1.56 1.56 1.10 1.02
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Histograms of αi and βi in the first hidden layer. Examples of fi(·).
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Error against learning time

•Results after 1000 minutes of CPU time
Compare to Hessian-free optimization (Martens, ICML 2010)

linear original shortcuts transf. Martens (2010)
training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k ?

Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?



Background

• Learning deep networks (many hidden 
layers) used to be difficult

• Layerwise pretraining by RBMs or denoising 
autoencoders helps

• Could similar performance be achieved 
with back-propagation?
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Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations
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• Learning rate decreased linearly in the second half of learning time
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Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?

Proposed method
• Standard MLP (only shallow shown)

• Include shortcut connections C

• Add linear transformations to nonlinearities

• Alphas and betas are not learned, but set to 
make learning the weights A,B,C easier
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Compare to Hessian-free optimization (Martens, ICML 2010)
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Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?
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Proposed Transformations
• Consider an MLP-network with a shortcut mapping C

yt = Af (Bxt) +Cxt + εt,

• Supplement nonlinearity with auxiliary variables αi and βi

fi(bixt) = tanh(bixt) + αibixt + βi

• Ensure that output is zero-mean and zero-slope on average

T
∑

t=1

fi(bixt) = 0
T
∑

t=1

f ′i(bixt) = 0

by setting αi and βi to

αi = −
1

T

T
∑

t=1

tanh′(bixt) βi = −
1

T

T
∑

t=1

[tanh(bixt) + αibixt]

and compensating the change by updating the shortcut mapping C

Motivation

•Transformations do not change the model, but the optimization

• Fisher information matrix is closer to a diagonal
because it contains terms with fi(·) and f ′i(·)

Gij =
∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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where f is a nonlinearity (such as tanh) applied to each
component of the argument vector separately, A, B,
and C are the weight matrices, and εt is the noise
which is assumed to be zero mean and Gaussian, that
is, p(εit) = N

(
εit; 0,σ2

i

)
. In order to avoid separate

bias vectors that complicate formulas, the input vec-
tors are assumed to have been supplemented with an
additional component that is always one.

Let us supplement the tanh nonlinearity with auxil-
iary scalar variables αi and βi for each nonlinearity fi.
They are not learnt, but instead they will be set in a
manner to help learn the other parameters. We define

fi(bixt) = tanh(bixt) + αibixt + βi, (2)

where bi is the ith row vector of matrixB. An example
fi can be seen in Figure 1. We will ensure that

T∑

t=1

fi(bixt) = 0 (3)

T∑

t=1

f ′
i(bixt) = 0 (4)

by setting αi and βi to

αi = − 1

T

T∑

t=1

tanh′(bixt) (5)

βi = − 1

T

T∑

t=1

[tanh(bixt) + αibixt] (6)

as shown in the appendix.

The effect of the linear transformation can be com-
pensated exactly by updating the shortcut mapping
C by

Cnew = Cold −A(αnew −αold)B

−A(βnew − βold) [0 0 . . . 1] , (7)

where α is a matrix with elements αi on the diagonal
and one empty row below for the bias term, and β is a
column vector with components βi and one zero below
for the bias term.

We also emphasize making the inputs xk zero mean
(and similar in scale) as a preprocessing step (see
e.g. [10]).

Schraudolph [14, 13] proposed centering the factors of
the gradient to zero mean. It was argued that devi-
ations from the gradient fall into the linear subspace
that the shortcut connections operate in, so they do
not harm the overall performance. Transforming the
nonlinearities as proposed in this paper has a simi-
lar effect on the gradient. Equation (3) corresponds
to Schraudolph’s activity centering and Equation (4)
corresponds to slope centering.

3 Intuitive Justification

Second-order optimization methods such as the natu-
ral gradient [1] or Newton’s method decrease the num-
ber of required iterations compared to the basic gradi-
ent descent, but they cannot be easily used with large
models due to heavy computations with large matrices.
The natural gradient is the basic gradient multiplied
from the left by the inverse of the Fisher information
matrix. Using basic gradient descent can thus be seen
as using the natural gradient while approximating the
Fisher information with a unit matrix. We will see how
the proposed transformations moves the non-diagonal
elements of the Fisher information matrix closer to
zero, thus making the basic gradient closer to the nat-
ural gradient.

The Fisher information matrix contains elements

Gij =
∑

t

〈
∂2 log p(yt | xt,A,B,C)

∂θi∂θj

〉
, (8)

where 〈·〉 is the expectation over the Gaussian distribu-
tion of noise εt in Equation (1), and vector θ contains
all the elements of matrices A, B, and C. Note that yt

is a random variable and thus the Fisher information
does not depend on the output data.

These elements are:

∂

∂aij

∂

∂ai′j′
log p =

{
0 i′ $= i
− 1

σ2
i

∑
t fj(bjxt)fj′(bj′xt) i′ = i,

(9)
where aij is the ijth element of matrix A, fj is the jth
nonlinearity, and bj is the jth row vector of matrix B.
Similarly

∂

∂bjk

∂

∂bj′k′
log p =

−
∑

i

1

σ2
i

aijaij′
∑

t

f ′
j(bjxt)f

′
j′(bj′xt)xktxk′t (10)

and

∂

∂cik

∂

∂ci′k′
log p =

{
0 i′ $= i
− 1

σ2
i

∑
t xktxk′t i′ = i. (11)

The cross terms are
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log p = − 1
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(12)

∂

∂cik

∂

∂ai′j
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− 1
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t fj(bjxt)xkt i′ = i

(13)
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∂cik
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log p = − 1

σ2
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aij
∑

t

f ′
j(bjxt)xktxk′t. (14)
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lar effect on the gradient. Equation (3) corresponds
to Schraudolph’s activity centering and Equation (4)
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tors are assumed to have been supplemented with an
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iary scalar variables αi and βi for each nonlinearity fi.
They are not learnt, but instead they will be set in a
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ations from the gradient fall into the linear subspace
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where f is a nonlinearity (such as tanh) applied to each
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and C are the weight matrices, and εt is the noise
which is assumed to be zero mean and Gaussian, that
is, p(εit) = N
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tors are assumed to have been supplemented with an
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They are not learnt, but instead they will be set in a
manner to help learn the other parameters. We define
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pensated exactly by updating the shortcut mapping
C by
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−A(βnew − βold) [0 0 . . . 1] , (7)

where α is a matrix with elements αi on the diagonal
and one empty row below for the bias term, and β is a
column vector with components βi and one zero below
for the bias term.

We also emphasize making the inputs xk zero mean
(and similar in scale) as a preprocessing step (see
e.g. [10]).

Schraudolph [14, 13] proposed centering the factors of
the gradient to zero mean. It was argued that devi-
ations from the gradient fall into the linear subspace
that the shortcut connections operate in, so they do
not harm the overall performance. Transforming the
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matrix. Using basic gradient descent can thus be seen
as using the natural gradient while approximating the
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ural gradient.

The Fisher information matrix contains elements

Gij =
∑

t

〈
∂2 log p(yt | xt,A,B,C)

∂θi∂θj

〉
, (8)

where 〈·〉 is the expectation over the Gaussian distribu-
tion of noise εt in Equation (1), and vector θ contains
all the elements of matrices A, B, and C. Note that yt

is a random variable and thus the Fisher information
does not depend on the output data.

These elements are:

∂

∂aij

∂

∂ai′j′
log p =

{
0 i′ $= i
− 1

σ2
i

∑
t fj(bjxt)fj′(bj′xt) i′ = i,

(9)
where aij is the ijth element of matrix A, fj is the jth
nonlinearity, and bj is the jth row vector of matrix B.
Similarly

∂

∂bjk

∂

∂bj′k′
log p =

−
∑

i

1

σ2
i

aijaij′
∑

t

f ′
j(bjxt)f

′
j′(bj′xt)xktxk′t (10)

and

∂

∂cik

∂

∂ci′k′
log p =

{
0 i′ $= i
− 1

σ2
i

∑
t xktxk′t i′ = i. (11)

The cross terms are

∂

∂aij

∂

∂bj′k
log p = − 1

σ2
i

aij′
∑

t

fj(bjxt)f
′
j′(bj′xt)xkt

(12)

∂

∂cik

∂

∂ai′j
log p =

{
0 i′ $= i
− 1

σ2
i

∑
t fj(bjxt)xkt i′ = i

(13)

∂

∂cik

∂

∂bjk′
log p = − 1

σ2
i

aij
∑

t

f ′
j(bjxt)xktxk′t. (14)

Deep Learning Made Easier by Linear Transformations in Perceptrons

where f is a nonlinearity (such as tanh) applied to each
component of the argument vector separately, A, B,
and C are the weight matrices, and εt is the noise
which is assumed to be zero mean and Gaussian, that
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bias vectors that complicate formulas, the input vec-
tors are assumed to have been supplemented with an
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They are not learnt, but instead they will be set in a
manner to help learn the other parameters. We define
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and one empty row below for the bias term, and β is a
column vector with components βi and one zero below
for the bias term.

We also emphasize making the inputs xk zero mean
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Let us supplement the tanh nonlinearity with auxil-
iary scalar variables αi and βi for each nonlinearity fi.
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where f is a nonlinearity (such as tanh) applied to each
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and C are the weight matrices, and εt is the noise
which is assumed to be zero mean and Gaussian, that
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Implementation Details 
• Learning algorithm: Stochastic gradient 

• Mini-batch size 1000, momentum 0.9 

• Transformations done initially and after every 1000 iterations 

• Soft-max for discrete outputs 

• Normalized random initialization, shortcut weights to zero 

• Learning rate decreased linearly in the second half of 
learning time

• Regularization: PCA in classification, weight decay, added 
noise to inputs



Experiments

• MNIST Classification

• CIFAR-10 Classification

• MNIST Autoencoder

• Image data, but nothing image-specific
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Proposed Transformations
• Consider an MLP-network with a shortcut mapping C

yt = Af (Bxt) +Cxt + εt,

• Supplement nonlinearity with auxiliary variables αi and βi

fi(bixt) = tanh(bixt) + αibixt + βi

• Ensure that output is zero-mean and zero-slope on average

T
∑

t=1

fi(bixt) = 0
T
∑

t=1

f ′i(bixt) = 0

by setting αi and βi to

αi = −
1

T

T
∑

t=1

tanh′(bixt) βi = −
1

T

T
∑

t=1

[tanh(bixt) + αibixt]

and compensating the change by updating the shortcut mapping C

Motivation

•Transformations do not change the model, but the optimization

• Fisher information matrix is closer to a diagonal
because it contains terms with fi(·) and f ′i(·)

Gij =
∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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Error against learning time

• Test errors after 15 minutes as regularization methods are included:

regularization none weight decay PCA noise (150 minutes)
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transform. 1.63 1.56 1.56 1.10 1.02
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Error against learning time

•Results after 1000 minutes of CPU time
Compare to Hessian-free optimization (Martens, ICML 2010)

linear original shortcuts transf. Martens (2010)
training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k ?

Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?
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∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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Error against learning time

• Test errors after 15 minutes as regularization methods are included:

regularization none weight decay PCA noise (150 minutes)
original 1.87 1.85 1.62 1.15 1.03
shortcuts 2.02 1.77 1.59 1.23 1.17
transform. 1.63 1.56 1.56 1.10 1.02
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Histograms of αi and βi in the first hidden layer. Examples of fi(·).
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Error against learning time

•Results after 1000 minutes of CPU time
Compare to Hessian-free optimization (Martens, ICML 2010)

linear original shortcuts transf. Martens (2010)
training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k ?

Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?



• Visualization of learned weights to randomly 
chosen hidden units on layers 1 and 2, and to 
the class outputs 0,1,...,9
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Classification error against learning time



Classification 
%

linear original shortcuts transf. Krizhevsky 
(2009)

Training error 58.07 23.21 22.46 4.56

Test error 59.09 44.42 44.99 43.70 48.47

CIFAR-10 Classification



Deep Learning Made Easier
by Linear Transformations in Perceptrons

Tapani Raiko1, Harri Valpola1, Yann LeCun2

1 Aalto University, Finland, 2 New York University, NY

Proposed Transformations
• Consider an MLP-network with a shortcut mapping C

yt = Af (Bxt) +Cxt + εt,

• Supplement nonlinearity with auxiliary variables αi and βi

fi(bixt) = tanh(bixt) + αibixt + βi

• Ensure that output is zero-mean and zero-slope on average

T
∑

t=1

fi(bixt) = 0
T
∑

t=1

f ′i(bixt) = 0

by setting αi and βi to

αi = −
1

T

T
∑

t=1

tanh′(bixt) βi = −
1

T

T
∑

t=1

[tanh(bixt) + αibixt]

and compensating the change by updating the shortcut mapping C

Motivation

•Transformations do not change the model, but the optimization

• Fisher information matrix is closer to a diagonal
because it contains terms with fi(·) and f ′i(·)

Gij =
∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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Error against learning time

• Test errors after 15 minutes as regularization methods are included:

regularization none weight decay PCA noise (150 minutes)
original 1.87 1.85 1.62 1.15 1.03
shortcuts 2.02 1.77 1.59 1.23 1.17
transform. 1.63 1.56 1.56 1.10 1.02
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Histograms of αi and βi in the first hidden layer. Examples of fi(·).
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Error against learning time

•Results after 1000 minutes of CPU time
Compare to Hessian-free optimization (Martens, ICML 2010)

linear original shortcuts transf. Martens (2010)
training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k ?

Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?
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Proposed Transformations
• Consider an MLP-network with a shortcut mapping C

yt = Af (Bxt) +Cxt + εt,

• Supplement nonlinearity with auxiliary variables αi and βi

fi(bixt) = tanh(bixt) + αibixt + βi

• Ensure that output is zero-mean and zero-slope on average

T
∑

t=1

fi(bixt) = 0
T
∑

t=1

f ′i(bixt) = 0

by setting αi and βi to

αi = −
1

T

T
∑

t=1

tanh′(bixt) βi = −
1

T

T
∑

t=1

[tanh(bixt) + αibixt]

and compensating the change by updating the shortcut mapping C

Motivation

•Transformations do not change the model, but the optimization

• Fisher information matrix is closer to a diagonal
because it contains terms with fi(·) and f ′i(·)

Gij =
∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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Error against learning time

• Test errors after 15 minutes as regularization methods are included:

regularization none weight decay PCA noise (150 minutes)
original 1.87 1.85 1.62 1.15 1.03
shortcuts 2.02 1.77 1.59 1.23 1.17
transform. 1.63 1.56 1.56 1.10 1.02
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Histograms of αi and βi in the first hidden layer. Examples of fi(·).
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Error against learning time

•Results after 1000 minutes of CPU time
Compare to Hessian-free optimization (Martens, ICML 2010)

linear original shortcuts transf. Martens (2010)
training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k ?

Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?
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Deep Learning Made Easier
by Linear Transformations in Perceptrons

Tapani Raiko1, Harri Valpola1, Yann LeCun2
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Proposed Transformations
• Consider an MLP-network with a shortcut mapping C

yt = Af (Bxt) +Cxt + εt,

• Supplement nonlinearity with auxiliary variables αi and βi

fi(bixt) = tanh(bixt) + αibixt + βi

• Ensure that output is zero-mean and zero-slope on average

T
∑

t=1

fi(bixt) = 0
T
∑

t=1

f ′i(bixt) = 0

by setting αi and βi to

αi = −
1

T

T
∑

t=1

tanh′(bixt) βi = −
1

T

T
∑

t=1

[tanh(bixt) + αibixt]

and compensating the change by updating the shortcut mapping C

Motivation

•Transformations do not change the model, but the optimization

• Fisher information matrix is closer to a diagonal
because it contains terms with fi(·) and f ′i(·)

Gij =
∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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Error against learning time

• Test errors after 15 minutes as regularization methods are included:

regularization none weight decay PCA noise (150 minutes)
original 1.87 1.85 1.62 1.15 1.03
shortcuts 2.02 1.77 1.59 1.23 1.17
transform. 1.63 1.56 1.56 1.10 1.02
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Histograms of αi and βi in the first hidden layer. Examples of fi(·).
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Error against learning time

•Results after 1000 minutes of CPU time
Compare to Hessian-free optimization (Martens, ICML 2010)

linear original shortcuts transf. Martens (2010)
training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k ?

Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?

Reconstruction error against learning time
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Proposed Transformations
• Consider an MLP-network with a shortcut mapping C

yt = Af (Bxt) +Cxt + εt,

• Supplement nonlinearity with auxiliary variables αi and βi

fi(bixt) = tanh(bixt) + αibixt + βi

• Ensure that output is zero-mean and zero-slope on average

T
∑

t=1

fi(bixt) = 0
T
∑

t=1

f ′i(bixt) = 0

by setting αi and βi to

αi = −
1

T

T
∑

t=1

tanh′(bixt) βi = −
1

T

T
∑

t=1

[tanh(bixt) + αibixt]

and compensating the change by updating the shortcut mapping C

Motivation

•Transformations do not change the model, but the optimization

• Fisher information matrix is closer to a diagonal
because it contains terms with fi(·) and f ′i(·)

Gij =
∑

t

〈

∂2 log p(yt | A,B,C,xt)

∂θi∂θj

〉

•Traditional gradient is thus closer to a natural gradient
and parameters are more independent

• Side effect: nonlinearity does not saturate → avoid plateaus
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Error against learning time

• Test errors after 15 minutes as regularization methods are included:

regularization none weight decay PCA noise (150 minutes)
original 1.87 1.85 1.62 1.15 1.03
shortcuts 2.02 1.77 1.59 1.23 1.17
transform. 1.63 1.56 1.56 1.10 1.02
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Histograms of αi and βi in the first hidden layer. Examples of fi(·).
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Error against learning time

•Results after 1000 minutes of CPU time
Compare to Hessian-free optimization (Martens, ICML 2010)

linear original shortcuts transf. Martens (2010)
training error 8.11 2.37 2.11 1.94 1.75
test error 7.85 2.76 2.61 2.44 2.55

# of iterations 92k 49k 38k 37k ?

Implementation Details

• Learning algorithm: Stochastic gradient with momentum

•Transformations done initially and after every 1000 iterations

• Soft-max for discrete outputs

•Normalized random initialization, shortcut weigths to zero

• Learning rate decreased linearly in the second half of learning time

•Regularization: PCA in classification, weight decay, added noise to inputs

Discussion

• Simple transformations make basic gradient
competitive with state-of-the-art

•Making parameters more independent will also
help variational Bayes and MCMC

• Could be initialized with unsupervised pre-
training for further improvement

•How about doing classification and autoen-
coder as a multitask?
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Discussion

• Simple transformations make basic gradient 
competitive with state-of-the-art 

• Making parameters more independent will also 
help variational Bayes and MCMC 

• Could be initialized with unsupervised pre-
training for further improvement 

• How about doing classification and autoencoder 
as a multitask?


