Neural Networks, Vol. S, pp. 927-935, 1992
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/92 $5.00 + .00
Copyright © 1992 Pergamon Press Ltd.

Principal Components, Minor Components,
and Linear Neural Networks

ERKKI OJA
Lappeenranta University of Technology

(Received 21 June 1991; accepted 12 March 1992)

Abstract—Many neural network realizations have been recently proposed for the statistical technique of Principal
Component Analysis (PCA). Explicit connections between numerical constrained adaptive algorithms and neural
networks with constrained Hebbian learning rules are reviewed. The Stochastic Gradient Ascent (SGA) neural
network is proposed and shown to be closely related to the Generalized Hebbian Algorithm (GHA). The SGA behaves
better for extracting the less dominant eigenvectors. The SGA algorithm is further extended to the case of learning
minor components. The symmetrical Subspace Network is known to give a rotated basis of the dominant eigenvector
subspace, but usually not the true eigenvectors themselves. Two extensions are proposed. in the first one, each neuron
has a scalar parameter which breaks the symmetry. True eigenvectors are obtained in a local and fully parallel
learning rule. In the second one, the case of an arbitrary number of parallel neurons is considered, not necessarily
less than the input vector dimension.

Keywords—Neural networks, Generalized Hebbian Algorithm, Stochastic gradient ascent, Subspace network, Minor

components, Eigenvector.

1. INTRODUCTION

Principal Component Analysis (PCA) is an essential
technique in data compression and feature extraction.
A method of reducing the number of input variables
entering some data processing systems is to discard
those linear combinations which have small variances
and to leave only those that have large variances. Even
if all linear combinations are maintained, variable-
length coding schemes allow very efficient coding and
decoding when the variances are as nonuniform as pos-
sible. Present-day data compression, e.g., the recently
proposed digital video compression standards (Le Gall,
1991) are based on this principle.

Assume that x is an n-dimensional input data vector
that has been centered to zero mean. The purpose of
the PCA is to find those p (p < n) linear combinations
wix, wix, ..., w}xof the elements of x that satisfy:

Acknowledgements: This work was undertaken while the author
held the Toshiba endowed chair at Tokyo Institute of Technology,
Japan. The author is grateful to Toshiba Co. and T.I.T. for this op-
portunity. Helpful discussions with Prof. H. Ogawa and Dr. L. Xu
are also gratefully acknowledged.

Requests for reprints should be sent to Erkki Oja, Lappeenranta
University of Technology, Department of Information Technology,
53851 Lappeenranta, Finland.

927

1. E{(wIx)*},i=1,...
the constraints

2. wlw; =g forj<i.
Requirement 2 is necessary to limit the values of

E{(wTx)?} and to get uncorrelated components.
The solution for the vectors wy, ..., w, are the p

dominant eigenvectors of the data covariance matrix

, p are maximized, under

C=E{xxT}. (1)

These are the p orthogonal unit vectors ¢y, . . . , ¢, given
by

Cei = \ci (2)

where Ay, . . ., A, are the p largest eigenvalues of matrix

C in descending order of magnitude. The first linear
combination c¥x is called the first principal compo-
nent, etc.

For example, in digital still video image compression,
x is an 8 X 8 block of a grey-tone digital image. The
eigenvectors ¢; are approximated by fixed transform
vectors given by the Discrete Cosine Transform (DCT).
It can be shown (Hamidi & Pearl, 1976) that the DCT
is asymptotically equivalent to PCA for signals coming
from a first-order Markov model, which is a reasonable
model for digital images. Thus, techniques related to
PCA will have extensive use in future multimedia com-
munication systems.

928

Recently, there has been much interest in the con-
nection between PCA and neural networks. MultiLayer
Perceptron (MLP) neural networks, which learn by
the Back Propagation algorithm in supervised autoas-
sociative mode, have been suggested for data compres-
sion by Cottrell, Munro, and Zipser (1987) and have
been shown to be closely connected to PCA by Baldi
and Hornik (1989) and Bourlard and Kamp (1988).
Another class of models, initiated by the author’s PCA
neuron with constrained Hebbian learning rule (Oja,
1982), are one-layer feedforward networks which com-
pute the PCA in unsupervised mode. Such models were
given and analyzed, e.g., by Baldi and Hornik (1991);
3ecker (1991); Chauvin (1989); Foldiak (1989);
Hornik and Kuan (1991); Karhunen (1984); Kar-
hunen and Joutsensalo (1991); Krogh and Hertz
(1990); Kung and Diamantras (1990); Linsker (1988);
Oja (1983); Oja and Karhunen (1985); Oja (1989,
1991); Oja, Ogawa, and Wangviwattana (1991); Rub-
ner and Tavan (1989); Sanger (1989); Sirat (1991);
Williams (1985); and Xu, Krzyzak, and Oja (1991).
Most models use linear neurons, but also nonlinear
ones can be shown to approximate the PCA (Sirat,
1991) or compute some other related statistical expan-
sions (Ojaet al., 1991). A general survey, relating PCA
models to other unsupervised learning neural networks,
was given by Becker (1991).

In the following, one of these suggested models, the
Subspace Network (Oja, 1989) is further analyzed, and
a new nonsymmetrical PCA network, the Stochastic
Gradient Ascent (SGA) network is introduced and
compared to the closely related but not equivalent
Generalized Hebbian Algorithm (GHA) network of
Sanger (1989). Section 2 gives a formulation for re-
cursive PCA from which all these network models can
be derived and gives the exact algorithms. A new mod-
ification, the Weighted Subspace Algorithm, is given,
which computes the true PCA in a symmetrical net-
work.

Section 3 gives new results on the equilibrium and
stable states of the Subspace Network for the case when
the number of neurons is larger than the input dimen-
sion. Large nonlinear layers can be used as building
blocks of nonlinear PCA networks (QOja, 1991), and
the analysis of the linear case is the first step to under-
standing the behavior of nonlinear constrained Hebbian
networks. Section 4 shows that the SGA introduced
here and the GHA are not equivalent and points out
why the SGA network might be preferable.

In some applications, e.g., frequency estimation of
signals buried in white noise (Thomson, 1979) and
curve fitting (Xu, Oja, & Suen, 1992), minor compo-
nents are needed instead of principal components. Mi-
nor components are linear combinations ¢!x, ¢J_;x,
etc., where ¢, is the eigenvector corresponding to the
smallest eigenvalue. In this case the algorithms cited
above cannot be directly used because the minor com-

E. Oja

ponents will be unstable. The changes needed in the
SGA are discussed in Section 5. Finally, Section 6 gives
some conclusions.

Throughout, the emphasis is on rigorous mathe-
matical results. Experiments using the suggested al-
gorithms have been given elsewhere, e.g., by Karhunen
(1984), Oja (1983), and Sanger (1989).

2. RECURSIVE PCA AND
NEURAL NETWORKS

2.1. Discrete-Time PCA Algorithms and Neural
Networks

Consider an adaptive system, e.g., a neural network,
that receives a stream of n-dimensional data vectors
x(k) (with k the discrete time) and tries to compute
estimates w,, . . ., w, for the p principal components,
i.e., for the p dominant eigenvectors cy, . . ., ¢, of the
data covariance matrix C. Usually the sequence { x(k)}
is assumed stationary, but in fact, the algorithms re-
viewed below can be used also for adaptive PCA for
nonstationary input streams. In Oja (1983), the fol-
lowing basic recursive PCA algorithm was suggested as
a numerical method: :

Let W = (w, ... w,)be the n X p matrix consisting
of vectors w;. It is updated by

Wiky=W(k— 1)+ y(k)x(k)x(k)TW(k - 1), (3)
Wk)= W(k)Sk)™", (4)

where (k) is a scalar gain parameter and S(k) is a
matrix, depending on W (k), which orthonormalizes
the columns of W (k). Thus, W (k) has orthonormal
columns for all k. Depending on the form of matrix
S(k), variants of the basic algorithm are obtained.

A. The Stochastic Gradient Ascent (SGA) algorithm.
In this form, matrix S(k) performs the Gram-Schmidt
orthonormalization (GSO) on the columns of W (k).
Writing this in explicit form for the columns of matrix
W (k) yields the following result:

LEMMA 1. For y(k) small, the j-th column w;(k) of
matrix W (k) in algorithms (3) and (4) satisfies

wi(k) = wi(k = 1) + v(k)(x(k)Tw;(k — 1))
X [x(k) = (x(k)Twi(k — 1)wi(k — 1)

j—1
=2 2 (x(k)Twi(k = 1)wilk = D]+ O(y(k)?),

i=1

j=1....p. (5)

The proof is given in both Oja (1983) and Oja and
Karhunen (1985).

The algorithm (5) is relatively simple from the nu-
merical point of view and could be improved in several
ways, if explicit matrix operations and matrix storage
are used (Comon & Golub, 1990). However, in the

Principal and Minor Components

form 5 it is especially suitable for neural network im-
plementation. Such an implementation is a one-layer
network of p linear parallel units, with x(k) the input
vector and w;(k — 1) the weight vector of the j-th unit.
Denoting the output of unit j by

vitk)y = wi(k — D Tx(k), (6)

and omitting the O(y(k)?) term, eqn (5) can be written
as
Awi(k — 1) = y(k)y;(k)[x(k) — y(k)wi(k = 1)

=2 2 vitkywi(k — 1)].

i<j

(7)

This network implementation is shown in Figure 1.
Algorithm (7) is called the SGA algorithm. Note
especially the coefficient 2 in the sum on the right hand
side, which is a consequence of using the GSO. The
first term on the right contains the product y;(k)x(k),
which is a Hebbian term, and the other terms are im-
plicit orthonormality constraints. The case j = | gives
the Constrained Hebbian learning rule of the basic PCA
neuron introduced by Oja (1982). Learning is then
purely local in the sense that the change in each indi-
vidual weight only depends on factors that would be
locally available at that position in a hardware neuron.
If this learning rule is assumed for each neuron, then
the effective input to neuron consists of the primary

929

The convergence of the vectors w (k), ..., w,(k)
to the eigenvectors ¢, . . ., ¢, was established by Oja
(1983).

B. The Subspace Network learning algorithm. Another
starting point for deriving practical algorithms and
network implementations from eqns (3) and (4) is that
matrix S(k) in eqn (4) is not performing GSO but
orthonormalizes the columns of W (k) in a symmetrical
way. Since W (k — 1) has orthonormal columns, if y(k)
is small the columns of W (k) in eqn (3) will be linearly
independent although not orthogonal. Then matrix
W (k)W (k) is nonsingular and positive definite, and
W (k) will have orthonormal columns if

S(k) = (W (k)W (k)" (8)
This is because now W(K)TW(k) = S(k)
W(k)TW(k)S(k)~" = I. Another recursive PCA al-
gorithm is obtained when, assuming y(k) small, S(k)™!
1s expanded as

Stk = (W)W (ky) 72
= [(W(k = DT+ y(k)W (k = D7x(k)x(k)T)
X (W (k= 1) + y(k)x(k)x(k) "W (k = 1)]7'72
[+ 2v(kYW (k — D) x(k)x(k)T
X W(k= 1)+ 0(y(k))]™'?
I = y(kOW(k - 1) x(k)x(k)™

Il

input x(k) from which the term 2 2,; y;(k)wi(k — 1) X W(k=1)
is subtracted. + O(v(k)?). (%)
Ty |wn T — 2y1wi |wy2 T —2) yiwy |wyp
- > .. i<p .
Ty |wa Tg — 2y 1wy |Wwa2 T2 — 2) yiwy |wap
. - e i<p —
Tn |Wnl Tn — 2Y1Wn1 |Wn2 Tn =2 YiWni |Wnp
- Ces i<p -
n Y2 Yp

FIGURE 1. The unsymmetrical SGA network. The p parallel linear neurons have outputs y, and weights w; for inputs x,. The time

index k is not shown explicitly.

930

Substituting this in eqns (3) and (4), and omitting all
terms proportional to y(k)?, gives

AW (k — 1) = y(k){I = W(k— DW (k- 17]
X x(k)x(k)TW(k — 1). (10)

This is the matrix form of the Subspace Network learn-
ing algorithm given by Oja (1989).
If the vector of outputs is denoted

y(k) = W(k - 1)Tx(k), (11)
then eqn (10) can further be written as
AW (k- 1)
= y(k)[x(k)y(k)T = W(k — Dy(k)y(t)T], (12)
or for the jth column w;(k) of W(k),
Awi(k—1)

p
= y(k)y;(k)[x(k) — Z yi(kywi(k — D]. (13)
i=1
This should be compared to the SGA algorithm in eqn
(7). The network implementation is analogous to Fig-
ure 1 but simpler because now the j-th horizontal line
carries the signal

14
Zj:X;_zy,Wﬂ (14)
i=1

which is the same for all neuron units. Thus, learning
at an individual connection weight wj; is local as it only
depends on y;, Xx;, and z;, all of which are easily acces-
sible at that position in a hardware network.

The convergence has been earlier studied by Wil-
liams (1985), who showed that the weight vectors
wi(k), ..., w,(k) will not tend to the eigenvectors
¢, ..., Cp but only to a rotated basis in the subspace
spanned by them. This result will be reviewed in Sec-
tion 2.2.

C. The Generalized Hebbian Algorithm (GHA). From
algorithm (12), the GHA given by Sanger (1989) is
obtained by replacing the matrix y(k)y(k)7 by just the
diagonal and superdiagonal, as noted by Hornik and
Kuan (1991) and Becker (1991):

AW (k= 1) = y(k)[x(k)y(k)" — W(k — 1)

X upper(y(k)y(k)T)]. (15)
The operator upper sets all subdiagonal elements of a
matrix to zero. Columnwise, this is similar to the SGA

algorithm of eqn (7) with the difference that there is
no coeflicient 2 in the sum:

Awy(k = 1) = v(k)y;(K)[x(k) — y;(K)w;(k — 1)
- 2 yikywi(k = 1] (16)

= y(k)y;(k)[x(k) = 2 yi(k)wilk — 1)].
isj

(17)

E. Oja

With this difference the GHA is implemented by the
same network of Figure 1 as the SGA. Compared to
the form (13), the difference is that in the GHA for
the j-th neuron the summation in the feedback term
is only up to j instead of p.

It was shown by Sanger (1989) that the weight vec-
tors will tend to the true eigenvectors.

D. The Weighted Subspace Algorithm. A new version
of PCA learning algorithm was recently proposed by
Oja, Ogawa, and Wangviwattana (1992a, 1992b).
Written in a form analogous to the Gradient Ascent,
Subspace Network, and Generalized Hebbian Algo-
rithms in eqns (7), (13), and (17), respectively, the
new algorithm is

Awi(k — 1)

p
= y(k)yy(k)[x(k) — 6; 2 yikywi(k — 1)]. (18)
i=1
Algorithm (18) is similar to the Subspace Network al-
gorithm except for the scalar parameters 4, . . ., 6,. If
all of these are equal to 1, it reduces to the Subspace
Network algorithm. However, if all of them are chosen
different and positive:

0<0,<b,...<86, (19)

then it has been shown by Oja et al. (1992b) that the
vectors wy(k), ..., w,(k) will tend to the true PCA
eigenvectors ¢, . . . , ¢,. The parameters will break the
symmetry in the Subspace Network learning rule with
the result that the true PCA basis is obtained instead
of an arbitrary rotation. Still, the learning rule is local
in the sense that each connection weight w; must have
access only to y;, x;, and the feedback term z; in eqn
(14), and in addition to the parameter 6, of that neuron
unit. The new algorithm is appealing because it pro-
duces the true eigenvectors but can be computed in a
fully parallel way in a homogeneous network.

2.2. The Corresponding Differential Equations

It was explained by Oja (1983) and Oja and Karhunen
(1985), based on the results of Kushner and Clark
(1978), how the asymptotic limits of discrete learning
rules can be solved by analyzing the corresponding
continuous-time differential equations. Formally, in
these equations, the term x(k)x (k)T occurring in the
discrete algorithms is replaced by the average C of eqn
(1), and v(k) is omitted. Denoting the continuous-
time counterpart of matrix W(k) = (w(k), ...,
w,(k)) by Z(t) = (z((2), ..., z,(1)), with denoting
continuous time, the following continuous-time learn-
ing algorithms are obtained.

1. For the SGA method:

dzjjdt = Cz; — (2] Cz))z; — 2 2, (2] Cz))z,,
i<j

j=1,...,p. (20)

Principal and Minor Components

2. For the Subspace Network:
dZ/dt = CZ - ZZ'CZ; (21)

or columnwise in a form comparable to (20):

p
dZ,/dI:CZ]- Z(Z,TCZ])Z,, j: l,...,p. (22)

i=1
3. For the GHA method:
dzj/dl = Cz;— (2] Cz)z; — X (2] Cz))z,

i<j
j=1,...,p. (23)
4. For the Weighted Subspace network:

14
dzjjdt = Cz;— 6; 3 (2] Cz)z;, j=1,...,p. (24)
i=1
The asymptotically stable limits of these differential
equations or groups of equations are possible limits of
the corresponding discrete algorithms. Although the
exact conditions under which the limits are exactly the
same have been established only in some special cases
in Oja (1983), it turns out that “usually” the limits
are the same, as shown by extensive simulations on
these algorithms by Karhunen (1984), Karhunen and
Joutsensalo (1991), Oja (1983), and Sanger (1989).
In the following, the stability of cases 1 to 3 above
will be reviewed and analyzed, while case 4 has been
thoroughly covered by Oja et al. (1992b).

3. ANALYSIS OF THE SYMMETRICAL
PCA NETWORK

Consider eqn (21). This equation has been earlier an-
alyzed by Williams (1985) in the case that the number
of neurons p is at most equal to the input dimension
n. Full rank fixed points have also been studied by Baldi
and Hornik (1991) and Krogh and Hertz (1990). Spe-
cifically, Williams (1985) studied the stability of matrix
P(t) = ¥Z(1)7 in the dynamics induced by eqn (21).
This is governed by

dP/dt = PC+ CP— 2PCP, (25)

which follows directly from eqn (21). The following
Lemma follows from results established for P(t) by
Williams (1985):

LEMMA 2. Let Zy € R™P be a fixed point of (21).
Assume that p < n and C is positive definite. Let
Po=Z,Z . Then

1. For all eigenvectors c; of C, either Pyc; = ¢; or
P()C,‘ =0.

2. If Py is not the orthogonal projection operator on the
p-dimensional subspace L, spanned by the first p
eigenvectors c,, . . ., ¢, of C, then P, is unstable in
the induced dynamics.

3. If Py is the orthogonal projection operator on L,
then it is stable in the induced dynamics.

931

For proof, see Lemmas | to 3 of Williams (1985).

All these results concern the local stability of fixed
points. The global stability could be studied along the
following lines: Eqn (25) is a matrix Riccati equation,
for which closed form solution methods exist. As an
example, if initially P(0) is a rank p orthogonal pro-
jection matrix

PO)=VVT (26)

where V' is an n X p matrix such that V7V = I, then
simple substitution shows that the unique closed form
solution of (25) for all ¢ is

P(1) = eV (VT2)1y TeCt, (27)

However, to analyze the global behavior for general ini-
tial conditions seems a challenging problem.

Although Result 1 in Lemma 2 above implicitly
species the fixed points of (21) for the case p < n, the
case of an arbitrary number p of parallel neurons has
not been explicitly specified up to now. The fixed points
are solutions to the equation

(I—-2Z"YCZ=CZ—-2Z(Z'CZ)=0. (28)

There are many fixed points in R ™7, fully character-
ized in the following for the case that p is arbitrary.

THEOREM 1. Let C be positive definite in (28). Let Z
be of size n X p with p arbitrary. Then all solutions of
(28) are of the form

Z=UH (29)

where U € R™" r < min{p, n}, and the columns of
U are some mutually orthonormal eigenvectors c;,, . . .,
c;, of C. Matrix H € R"™” has orthonormal rows, and
matrix ZZT € R™" is the orthogonal projection matrix
on the subspace spanned by c;,, . . ., c;.

The proof will be given in the Appendix.

All of the fixed points given by Theorem | are es-
sentially rotations of matrices whose columns are ei-
genvectors of C multiplied by some scalars, including
zero. For example, matrix Z = (¢, . . . ¢,) where the ¢;
vectors are eigenvectors of C is a fixed point, as is the
matrix Z = (a cpasc, ... agc,0 ... 0), with k < p
arbitrary and 2%, a? = 1. In the latter case, Z = UH
with U = (¢,) and H = (a3 ... a0 ... 0) which
clearly satisfies HH7 = I under the stated condition
of «;.

Results 2 and 3 of Lemma 2 above, established by
Williams (1985), show the stability of certain fixed
points in the case p < n. In Theorem 1, no assumption
was made on the number of neurons p. Based on this
theorem, another new result can be derived concerning
the stability of solutions to eqn (21) in the case when
p is actually larger than input dimension n. This may
seem uninteresting because no data compression is then
possible, and this case cannot be derived from the gen-
eral recursive PCA algorithm of eqns (3) and (4).

932

However, the symmetrical PCA network can be for-
mally defined for any number of parallel neurons, and
a relevant question is what will happen if p > n. This
becomes an interesting problem when the neurons are
nonlinear and PCA layers can be cascaded nontrivially
to form multilayer neural networks Oja (1991). The
analysis of the linear case helps then to understand the
behavior of the nonlinear network.

We have now the following result corresponding to
Lemma 2:

THEOREM 2. Let Zy € R™P be a fixed point of (21).
Assume that p = n and C is positive definite. Let
Py = ZyZ§. Then Py is asymptotically stable in the
induced dynamics if and only if Py = 1.

The proof is given in the Appendix.

The result shows that there is a certain symmetry
in the stable states: When the number of neurons p is
smaller than input dimension #, the stable solution Z;
will have orthonormal columns which span the domi-
nant p-dimensional subspace; when p = n, Z; is a
square matrix with both rows and columns orthonor-
mal; and when p > n, Z, will have orthonormal rows
and the nonorthogonal columns span the whole space
R". Equation ZZT = I implies for the columns z; that
>k, z;zI = I; such a basis of " is called a pseudo-
orthonormal basis.

For the linear net, in which the weight matrix W (k)
converges to W satisfying WW7T = I, eqn (11) then
further implies x = Wy = 2%, w;p;; the outputs y,
from the PCA layer give the coefficients of x in the
pseudo-orthonormal basis of the weight vectors w;.
Thus, input x can be uniquely determined from output
y, which means that no information loss takes place at
such a neural layer.

4. ANALYSIS OF THE NONSYMMETRICAL
PCA NETWORKS

Consider now eqns (20) and (23). They can be unified
to the form
dzj/dt = Cz;— (z]Czj)zj — a 2 (2] Cz))z,,

i<j

j=1,...,p, (30)

where o = | for the GHA and 2 for the SGA. It has
been shown by Oja (1983) and Sanger (1989) that the
eigenvectors +¢; are asymptotically stable solutions for
z;in SGA and GHA, respectively. The algorithms differ,
however, in the behavior of the less dominant eigen-
vectors for very small initial values. For both algo-
rithms, zero is an unstable fixed point for z;, but the
SGA behaves better in the neighborhood of zero.

To illustrate this, consider only the last vector z,.
Because the previous vectors zy, ..., z,-; are inde-
pendent of z,, it can be assumed that they have already

E. Oja

converged to ¢y, . . ., ¢,-1, respectively. Then eqn (30)
gives:
dz,/di = Cz, = (2] Cz,)z, — a 2 Ne(celz,). (31)
i<p
The stability of zero as the solution is determined by
the linear part,

dz,/dt = (C— a)\,c',c',T)z,,. (32)
i<p

The eigenvectors of the coefficient matrix are clearly
¢, ..., c, with corresponding eigenvalues (1 — a)A;
for i < p and \; for i = p. The mutual ratios of these
determine how quickly z, will turn to the direction of
¢,. If at a certain moment {

n

(1) = 2 e(1)c. (33)

i=t
with ¢;(7) very small, then it holds
df,‘/df = (l - C\’))\,‘(,‘, 1<p, (34)
=N¢, [=zp. (35)

This shows that for « = | as in the GHA rule, the
components in the direction of the more dominant ei-
genvectors do not die out until the nonlinear part takes
effect, while if « = 2 (or, in fact, any number >1) they
go to zero faster. In numerical solutions of the differ-
ential eqn (31) for « = 1 and « = 2, there is a clear
difference: The relative projection of zon ¢,, or | z Tc,, |/
|lzll, grows much faster to 1 when o = 2.

5. LEARNING MINOR COMPONENTS

Linear combinations ¢/ xwithi=n,n—1,...,given
by the eigenvectors corresponding to the smallest ei-
genvalues of C, are called minor components (Xu et
al., 1992). It was shown by Thomson (1979) how they
can be used to estimate frequencies of sinusoidal signals
buried in white noise. Recently, Xu et al. (1992) in-
troduced a neural unit, the Optimal Fitting Analyzer,
which is an anti-Hebbian variation of the basic PCA
neuron of Oja (1982). This was applied to a Subspace
Classifier by Xu et al. (1991).

Formally, reversing the Hebbian learning rule in eqn
(5) to the anti-Hebbian variant and reversing the sign
of the normalizing term gives the starting-point for the
minor component learning algorithm. As in eqn (30),
the continuous-time counterpart is given by
dz;/dt = —Cz; + (2] Cz))z; — a 2 (2] Cz)) z;,

i>)
j=n,n—1,...,p, (36)

where a = 2. However, the eigenvectors ¢, . . ., ¢, are
not stable solutions of this equation. A stable form is
obtained by choosing the parameter a suitably so that
the solutions z,, . . . , z, will become orthonormal, and
by adding an extra term that will normalize the solu-

Principal and Minor Components

tions to unit length. Such a stable algorithm is given
by
dzjjdt = —Cz; + (2] Cz))z; — a 2, (2] C))z

i>j
+2,—(z]z)z, j=nn—1,....p. (37)

The corresponding network implementation is given
by the learning algorithm

Awi(k — 1) = v(k)[—y;(k)x (k)
+ k) + 1 — wi(k — 1)Twi(k — D)jwi(k = 1)
+ o 2 yi(k)y(kywi(k — 1)]. (38)

i>f

The first term in the brackets is the anti-Hebbian term
and the second term is the ““forgetting” term, propor-
tional to w;(k — 1) itself. Now the coefficients in the
forgetting term are more complicated than in the orig-
inal SGA algorithm, but everything is still local within
one neuron although not within one connection weight.
The third term, similar to the SGA, gives the influence
of the other neurons. Assuming this modified learning
rule for each neuron, the network of Figure | can be
used to implement the algorithm (38) with obvious
changes in the interneuron signals.

The algorithm (38) will converge to the minor com-
ponents in the same way as the SGA algorithm con-
verges to the principal components. The essential point
concerns the stable fixed points of the continuous-time
algorithm (37), which are given in the following:

THEOREM 3. In algorithm (37), assume:

1. The eigenvalues of C satisfy \y > Ay > ... > N\, >
0,and N\, < 1.

2. The parameter o is chosen as o > \,/\, — 1.

Then as ¢t = o0, each z(¢),j=n,n—1,...,p,
will tend to either ¢; or —¢; if ¢/z;(0) is positive or
negative, respectively.

The proof is given in the Appendix.

Note that all eigenvectors can be obtained with this
algorithm if all eigenvalues are smaller than | and « is
chosen larger than A; /A, — 1. The magnitude of eigen-
values can be controlled in practice by normalizing the
inputs. The condition on « in Theorem 3 is essential
in the sense that if it does not hold, then z, will not
converge to ¢,. Simulations with artificial input data
sets show that if « is larger than but close to A,/\, —
1, convergence will be slow. Best convergence is ob-
tained when « is chosen large. The quantitative depen-
dence of the convergence speed on parameter « is shown
in the proof of Theorem 3 in the Appendix.

6. CONCLUSIONS

The algorithms reviewed and introduced above are
typical learning rules for the adaptive PCA or minor
component extraction problem, and they are especially
suitable for neural network implementations. In nu-

933

merical analysis and signal processing, many other al-
gorithms have been reported for different computing
hardware. A recent review is Comon and Golub (1990).
Experimental results on the PCA algorithms both for
finding the eigenvectors of stationary training sets, and
for tracking the slowly changing eigenvectors of non-
stationary input data streams, have been reported by
Karhunen (1984) and Oja (1983). Results of the GHA
algorithm on image coding, texture segmentation, and
receptive field modelling were given by Sanger (1989).
(1989).

An obvious extension of the PCA neural networks
would be to use nonlinear units, e.g., Perceptrons, in-
stead of the linear units. This allows nontrivial cascad-
ing of neural layers to more complicated networks. They
will then optimize some other criteria, related but not
equivalent to the PCA (Ojaetal., 1991). Such nonlinear
PCA networks have been analyzed elsewhere by Oja
(1991).

REFERENCES

Baldi, P., & Hornik, K. (1989). Neural networks and principal com-
ponents analysis: Learning from examples without local minima.
Neural Networks, 2, 52-58.

Baldi, P., & Hornik, K. (1991). Back-propagation and unsupervised
learning in linear networks. In Y. Chauvin and D. E. Rumelhart
(Eds.), Back-propagation: Theory, Architecture, and Applications.
Hillsdale, NJ: Erlbaum Associates.

Becker, S. (1991). Unsupervised learning procedures for neural net-
works. International Journal of Neural Systems, 2, 17-33.

Bourlard, H., & Kamp, Y. (1988). Auto-association by multilayer
perceptrons and singular value decomposition. Biological Cyber-
netics, 59, 291-294.

Chauvin, Y. (1989). Principal component analysis by gradient descent
on a constrained linear Hebbian cell. Proceedings of the IJCNN,
Washington DC, 1, 373-380.

Comon, P., & Golub, G. (1990). Tracking a few extreme singular
values and vectors in signal processing. Proceedings of the IEEE,
78, 1327-1343.

Cottrell, G. W.,, Munro, P. W,, & Zipser, D. (1987). Image compression
by back-propagation: A demonstration of extensional program-
ming. (Technical Report 8702). San Diego, CA: University of
California, Institute of Cognitive Science.

Foldiak, P. (1989). Adaptive network for optimal linear feature ex-
traction. Proceedings of the IJICNN, Washington, DC, 1, 401-405.

Hale, J. (1980). Ordinary differential equations. Huntington, NY:
R. E. Krieger Publishers.

Hamidi, M., & Pearl, J. (1976). Comparison of the cosine and Fourier
Transforms of Markov-1 signals. IEEE Transactions on Acoustics,
Speech, and Signal Processing, Assp-24, 428-429.

Hornik, K., & Kuan, C. (1991). Convergence analysis of local feature
extraction algorithms. Neural Networks, 5(2), 229-240.

Karhunen, J. (1984). Recursive estimation of eigenvectors of corre-
lation type matrices for signal processing applications. Ph.D. dis-
sertation, Helsinki University of Technology, Finland.

Karhunen, J., & Joutsensalo, J. (1991). Tracking of sinusoidal fre-
quencies by neural network learning algorithms. Proceedings of
the ICASSP-91, Toronto, Canada.

Krogh, A., & Hertz, J. (1990). Hebbian learning of principal com-
ponents. In R. Eckmiller, G. Hartmann, & G. Hauske (Eds.),
FParallel processing in neural systems and computers (pp. 183-
186). Amsterdam: Elsevier.

Kung, S., & Diamantras, K. (1990). A neural network learning al-

934

gorithm for adaptive principal component extraction (APEX).
Proceedings of the ICASSP-90, Albuquerque, NM, 861-864.

Kushner, H., & Clark, D. (1978). Stochastic approximation methods
Jor constrained and unconstrained systems. New York: Springer.

Le Gall, D. (1991). MPEG: A video compression standard for mul-
timedia applications. Communications of the ACM, 34, 46-58.

Linsker, R. (1988). Self-organization in a perceptual network. Com-
puter, 21, 105-117.

Ogawa, H., & Oja, E. (1986). Projection Filter, Wiener Filter, and
Karhunen-Loeve Subspaces in digital image restoration. Journal
of Mathematical Analysis and Applications, 114, 37-51.

Oja, E. (1982). A simplified neuron model as a principal components
analyzer. Journal of Mathematical Biology, 15, 267-273.

Oja, E. (1983). Subspace methods of pattern recognition. Letchworth,
England: Research Studies Press and John Wiley & Sons.

Oja, E. (1989). Neural networks, principal components, and sub-
spaces. International Journal of Neural Systems, 1, 61-68.

Oja, E. (1991). Data compression, feature extraction, and autoas-
sociation in feed-forward neural networks. In T. Kohonen, K.
Mikisara, O. Simula, & J. Kangas (Eds.), Artificial neural networks
(pp. 737-745). Amsterdam: North-Holland.

Oja, E., & Karhunen, J. (1985). On stochastic approximation of the
eigenvectors and eigenvalues of the expectation of a random matrix.
Journal of Mathematical Analysis and Applications, 106, 69-84.

Oja, E., Ogawa, H., & Wangviwattana, J. (1991). Learning in non-
linear constrained Hebbian networks. In T. Kohonen, K. Mikisara,
O. Simula, & J. Kangas (Eds.), Artificial neural networks (pp.
385-390). Amsterdam: North-Holland.

Oja, E., Ogawa, H., & Wangviwattana, J. (1992a). Principal Com-
ponent Analysis by homogeneous neural networks, Part I: The
Weighted Subspace criterion. To appear in IEICE Transactions
on Information and Systems (Japan), E75-D, 3, 366-375.

Oja, E., Ogawa, H., & Wangviwattana, J. (1992b). Principal Com-
ponent Analysis by homogeneous neural networks, Part II: Analysis
and extensions of the learning algorithms. To appear in IEICE
Transactions on Information and Systems (Japan), E75-D, 3, 376-
382.

Rubner, J., & Tavan, P. (1989). A self-organizing network for principal
components analysis. Europhysics Letters, 10, 693-689.

Sanger, T. D. (1989). Optimal unsupervised learning in a single-layer
linear feedforward network. Neural Networks, 2, 459-473.

Sirat, J. A. (1991). A fast neural algorithm for principal component
analysis and singular value decomposition. International Journal
of Neural Systems, 2, 147-155.

Thompson, P. (1979). An adaptive spectral analysis technique for
unbiased frequency estimation in the presence of white noise.
Proceedings of the 13th Asilomar Conference on Circuits, Systems,
and Computers, Pacific Grove, CA, 529-533.

Williams, R. (1985). Feature discovery through error-correcting
learning. (Technical Report 8501). San Diego, CA: University of
California, Institute of Cognitive Science.

Xu, L., Krzyzak, A., & Oja, E. (1991). Neural nets for dual subspace
pattern recognition method. International Journal of Neural Sys-
tems, 2, 169-184.

Xu, L., Oja, E., & Suen, C. (1992). Modified Hebbian learning for
curve and surface fitting. Neural Networks, 5(3), 441-457.

APPENDIX: PROOFS OF THEOREMS

Proof of Theorem 1
In order to prove Theorem 1, a technical result is needed:

LEMMA Al. Let C be positive definite, and let P be an orthogonal
projection matrix that satisfies

CP = PC. (A-1)

Then P is a projector on a subspace spanned by some eigenvectors
of C.

E. Oja

PROOF. For proof, see Theorem 3 in Ogawa and Oja (1986).

Proof of Theorem 1. Consider any solution of (28). Denote the or-
thonormal basis of #(Z) by v,, ..., v,, where r = dim R(Z) =
rk(Z). Each column of Z can be written as

i = z vjﬁjis i= l, sy Dy (A'z)
Jj=1

with 8; some scalar coefficients. Denoting the matrix of 8; by B and
the matrix whose columns are the vectors v; by V it holds that Z =
VB, with VTV = I. Matrix B € R "™ must be of full rank since rk(Z)
= r < min[rk(V), rk(B)], hence rk(B) = r. Then matrix BBT €
R is nonsingular.

Now substitute Z = VB in (28):

CVB = VB(BTVTCVB). (A-3)
Multiplying (A-3) by ¥ 7 on the left and by B on the right yields
VICVBBT = VIVBBTVTCVBBT. (A-4)

Since V7V = I and Cis positive definite, matrix ¥7CV is nonsingular.
First BB, then V'TCV can be removed from the right which leaves
I = BBT.

This, in turn, implies that

ZZT = VBBTVT = yyT (A-5)

which is a projection matrix.
Now, multiplying (A-3) by B7V7 on the right,

CVBBTVT = VBBTVICVBBTVT, (A-6)
and substituting BB” = I yields
CVVT = VVTCVVT. (A-7)

Since the right hand side is symmetrical, also the left side must be
symmetrical which gives

cvvT = vvic. (A-8)

Since ¥ VT is a projection matrix, Lemma A1 implies that it is the
projector on some eigenvector subspace spanned by a set of r ortho-
normal eigenvectors ¢;,, . . ., ¢;, of C. Then also

V=UA (A9)

where the columns of U are the vectors ¢;,, . . ., ¢; and 4 is a matrix
with 47! = A7, Finally, substituting this in Z = VB yields Z = U4B
= UH where matrix H = 4B satisfies HH” = ABBTAT = AAT = I.
This concludes the proof of Theorem 1.

Proof of Theorem 2

The proof is based on the following Lemma:

LEMMA A2. Let Z, be any fixed point of eqn (21) and denote Z,Z §
= P,. Py is asymptotically stable in the induced dynamics if and only
if matrix C — 2 PyC is negative definite.

Proof. Let E(t) = Z(1)Z(1)T — P,. By eqn (25), E satisfies
dE/dt = (C—2P,C)E + E(C—-2P,C)—2ECE. (A.10)

E = 0 is a stable solution of this if and only if C — 2 P,C is negative
definite, by standard results on differential equations (e.g., Theorem
2.4 of Hale, 1980).

Proof of Theorem 2. If part: assume ZoZ § = Py = I. Matrix C —
2 P,C of Lemma A1 becomes —C which is positive definite. Therefore,
P, is asymptotically stable.

Only if part: assume Z; is stable. By Theorem 1, it holds for any
fixed point that P, = ZoZ { is a projector on some r-dimensional
eigenvector subspace. Assume that rk(Z,) = r < n, which will lead
to a contradiction: In this case, there is an eigenvector ¢; such that
Poc; =0, and it follows that ¢; is also an eigenvector of C — 2 PyC with

Principal and Minor Components

eigenvalue \; > 0. Thus C — 2 P,C is not negative definite and Fq is
unstable. Because ZZT — Py=ZZ7T — Z,Z = (Z — Z)ZT + Zo(Z
~ Zy)T, implying

1Z = Zoll = (HZZT = Pl)/NZ K+ 1Zoll) (A-LD)

it follows that also Z, is unstable. This is the contradiction. Therefore,
r must be equal to nand Py = 1.

Proof of Theorem 3

Multiplying eqn (37) by any eigenvector ¢/, k = 1, ..., non the left
yields

d
o (clz)) = =Ml clz) + (2] Czi+ 1 = 2[z))(clz)
' —a 3 (zTCz)clz). (A-12)

>
For z, this gives

4

dt
According to Theorem 3, assume that ¢[z,(0) # 0. Because the so-
lution for ¢z, is unique and ¢z, = 0 is a possible solution, it follows
that ¢z,(¢) will remain nonzero and have the same sign for all 7. It
is then possible to define 8y, = (¢fz,)/(cIz,), k < n. For this, eqn
(A-13) gives directly

(clz) = = Mlelzn) + (27Cz, + | = 2]z,)(clz,). (A-13)

dok,,/dl = (—>\k +)\,,)ok,, (A-14)

which implies that 8,,, = 0 for all k < n because A\, < \,. Therefore,
asymptotically, z, has the direction of ¢,. Denote z, = {,¢,. It follows
that {, = ¢lz,, and eqn (A-13) gives

935

diafdt = =N+ (NSE+ 1= §0)8, (A-15)
= (1= X\ = D)5 (A-16)

The fixed points of this scalar differential equation are 0 and *1.
Because it is assumed in the theorem that | — A, > 0, the point 0 is
unstable and points *+1 are asymptotically stable. If ¢,(0) =
¢Tz,(0) is positive or negative, the limit is +1 or —1, respectively.
This shows convergence of z, to the n-th unit eigenvector.

To show the convergence of z,_, . . ., z,, induction is used. Assume
that z,, ..., z, have converged to ¢, . . ., ¢4, respectively, with j
2 p. It is shown that z; will then converge to ¢;. Equation (A-12) can
now be replaced by

d
7 (clz)) = =Ml clz)) + (2] Cz + 1 = 2]Z)(ckz)

—a 2 (c]Cz)(cle). (A-17)

i>j

For the sum term it holds: if k > j, then Z,; (z/Cc))(clc;) =
Mdclz;), and if k < j, the sum term is zero. Again, it is assumed that
¢[z;(0) # 0, implying that ¢]z;(1) # 0 for all ¢, and 8y; = cfz;/c]z
can be defined. Equation (A-17) gives:

di/dt = ((—1 — a)he + Ny, k> j; (A-18)
= (=Nt M)y, k<. (A-19)

Under the assumption of Theorem 3 it holds a > A\,/A, — |. In the
case that k > j, or p < j < k < n, it holds for the eigenvalues that A,
= \; > M = A, which implies A,/ X, = A/ A. Thus, also a > A;/ A
— 1, implying (=1 — a) X\ + A < 0. It follows that all f,; except 6,
will tend to zero. The convergence is exponential and the speed of
convergence for 0y, k > j depends on a according to eqn (A-18).
Finally, to show that the norm of z; tends to one, exactly the same
proof as for the case z, applies. This concludes the proof of Theorem 3.

