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 transfer of novel explicit open user models
(curated by user during information seeking)
strongly improves cold-start talk recommendation






Recommender systems face a
recommendations are needed for users who have
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Recommender systems face a
recommendations are needed for users who have
rated few or no items

We investigate user model transfer
to enable warm start: establlsh I
source system, use |n target system




Cross-system/domain recommendation has
grown in popularity, but still few studies
exploring real information transfer (lack of
paired users across systems).

Major focus has been on approaches not
assuming common users. Major approaches:
collaborative filtering or content-based.

Results mixed, especially content-based has
been hard. Focus has been on settings having
shared semantic features (social tags,
Wikipedia).



We expand earlier research by exploring

transferability of open user models across
related but different domains.

Users of the source system can explore and
curate their model by visual interaction.
—

better quality user models, valuable for
cross-system transfer

1st work exploring transferability of open user
models.



Contributions:

1) cross-system transfer of open user models
greatly improves cold-start recommendation

2) we investigate ways of transferring open user
models, as well as transfer of more traditional
implicit and explicit document information.

Open user models bring greatest benefit. We
explain it by analysis of cross-system similarities
of the different information types.



Academic Information Setting

Academic users attend research talks.

A talk management system can recommend
interesting talks given the user’s preference.

Relatively many talks but few bookmarks and
ratings (Farzan et al., 2008)

New users face the cold start problem

Academic users also search for scientific
documents in a scientific search system. Can
its user model help talk recommendation?



Target system: CoMeT system for talk
management and recommendation

Week 5 of March: March 24 - 30, 2013
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Target system: CoMeT system for talk
management and recommendation
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System for sharing information about
research talks at Carnegie Mellon
University and University of Pittsburgh.
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e Collaborative tagging system: anyone can announce,
find, bookmark, and tag talks.

* Has content-based recommender - builds interest
profile of individual users, recommends new talks to
users immediately when posted.



Academic Information Setting

* We use CoMeT as the target system

* Academic users also search for scientific
documents in a scientific search system. Can
its user model help talk recommendation?

* Unlike traditional search systems (e.g. Google
Scholar, Microsoft Academic Search, Citeseer),
as the source system we use a recent search
system having an open user model
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Source system: SciNet system
for interactive exploratory search
of scientific documents
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Source system: SciNet system
for interactive exploratory search
of scientific documents

Exploratory search system. Indexes
.. _over 50m scientific documents from

e Goes beyond text-based queries.

e User can direct exploratory search by interacting with an
open user model.

e Significantly improves information seeking task
performance and quality of retrieved information.

e Open user models are promising for cross-system
transfer.



SciNet opens its user model: users can interact with a
visualization of the model, and curate the model by feedback.

HIIT SCINET
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Technically:
b  model is inferred by Bayesian
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Ways of Transferring a User Model

Our interest is to use
1. the whole content of the open user model

2. its curated subset (the keywords the user moved in
the process of curation).

As a baseline, we also explore transfer of:

3. the relevant documents selected by the user during
search (could be considered a hidden, implicit user
model)

4. a broader set of all documents retrieved in response
to user queries (weaker reflection of user interests)
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Explicit model 1: manipulated keywords
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Take keywords
manipulated by users,
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unigrams, and form a
pseudo-document
(bookmarked talk
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(discard unigrams not occurring in
target system)



Explicit model 2: shown keywords
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At each iteration,
Take keywords

seen by users,

with their predicted
relevances, convert to
unigrams, and form a
pseudo-document
(bookmarked talk
abstract) from them.

(discard unigrams not occurring in
target system)
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Implicit model 1: bookmarked documents

Scientific documents
bookmarked by the user
during the search session
are implicit information
about user interests.

Convert each into
unigrams, add into
CoMeT as a bookmarked
talk.
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Implicit model 2: seen documents

Scientific documents seen
by the user during the
search session are implicit
information about user
interests (momentary
responses to user search).

Convert each into
unigrams, add into
CoMeT as a bookmarked
talk.
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Experiments

* 20 researchers from University of Helsinki:
14 male, 6 female; 10 PhD researchers and 10 research assistants

* SciNet: Search relevant papers to their interest

- “Write down 3 areas of your research interests. Imagine you are
preparing for a course/seminar for each interest. Search scientific
documents you find useful for preparing for the courses/seminars.’
- Bookmark at least 5 documents for each interest.

- 7min demonstration, 30min for task

- Complex enough: users must interact with the system to get
needed information. Broad enough to reveal research interests.

* CoMeT: Rate 500 talks (Jan 1 to May 17, 2013)

- Consider attending (Yes/No)? If yes, rate willingness 1 — 5
- 7min demonstration, 75min for task

4

* All interactions logged (shown/manipulated keywords

shown/bookmarked documents, queries, read abstracts...)



Non-cold-start Setting

We first evaluated a traditional non-cold-start
learning setting

10-fold cross-validation setup, in each fold
rank the held-out CoMeT talks by 3 predictors

Centroid: rank test talks by cosine similarity to
centroid of bookmarked talks

k-Nearest-Neighbor: find nearest training

neighbors for each test talk, rank by Spos-Sneg

(sum of cosine similarities to positive nearest neighbors - sum of
cosine similarities to negative neighbors)

positive-only kNN: find nearest positive-rated
talks, rank by sum of cosine similarity to them



* Results evaluated by Mean Average Precision of

Non-cold-start Setting

ranked test talks

(mean of precision values at positive test talks in the ranking,
averaged over users and folds)

no significant improvement from transfer
compared to baseline in non-cold-start setting
from traditional or open-user-model approach

User profiles in CoMeT had enough data to work

well on their own

Mean Average Precision |Centroid k-NN k-NN.PO
onn 10nn|20nn|(30nn(5nn.po/10nn.po | 20nn.po|30nn.po
baseline 0.47 0.45| 047 | 0.48 | 0.46 | 0.48 0.50 0.50 0.50
Implicit ex.papers 0.42 0.44| 0.45 | 0.45 | 0.44 | 0.43 0.44 0.44 0.44
User Model |im.papers 0.36 0.36| 0.36 | 0.35 | 0.35 | 0.36 0.37 0.36 0.36
Explicit Open ex.keywords 0.48 0.46| 0.48 | 0.48 | 0.47 | 0.49 0.51 0.51 0.50
User Model |im.keywords| 0.47 0.46) 0.48 | 0.49 | 0.49 | 048 0.49 0.49 0.48




Cold-start Setting

In each cross-validation fold we subsample a
small pool of cold-start talks (0-20 positive talks,

proportionally same amont of negative talks)

Cold-start talks used to predict test talk
ranking, evaluate by mean average precision

We report average results over 10
subsamplings

Same predictors as before (Centroid,
k-Nearest-Neighbor, positive-only kNN)



Cold-Start Impact
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Analysis

* Cosine similarities between different information types

0.08
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Cosine Similarity

0.02

SIK_CN
SEK_CP -
SEK_CN

Explicit open user models
have good similarity to
positive-rated talks,

well separated from
uninteresting talks

Implicit models from papers
are far from bookmarked talks.
They do not separate positive-
rated from uninteresting talks.
—» add more noise than value



Summary

Cross-system personalization by transferring an
explicit, open, and editable user model.

Transfer from a literature search system to a talk
recommendation system.

Cross-system model transfer is challenging: no impact
in general case

However, significant impact in cold-start case!

Use of open, explicitly curated user models is critical
for the success of user model transfer

Transferring implicit models (here through shown or
bookmarked documents) can damage performance
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