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Timo Similä a,b, Jarkko Tikka a,∗

aLaboratory of Computer and Information Science, Helsinki University of

Technology, P.O. Box 5400, FIN-02015 HUT, Finland

bXtract Ltd, Hitsaajankatu 22, FIN-00810 Helsinki, Finland

Abstract

Choosing a useful combination of input variables and an appropriate complexity of
the model is an essential task in nonlinear regression analysis because of the risk of
overfitting. This article provides a workable solution for the multilayer perceptron
model. An initial structure of the model, including all the input variables, is fixed
in the beginning. Only the most useful input variables and hidden nodes remain
effective when the model is fitted with the proposed penalization method. The
method is tested on three benchmark data sets. Experimental results show that
the removal of useless input variables and hidden nodes from the model improves
its generalization capability. In addition, the proposed method compares favorably
with respect to other penalization methods.
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1 Introduction

Regression is the problem of learning an input-output relationship based on
data. The functional form of the relationship is unknown in general. The
multilayer perceptron is a convenient choice of model, because it is capable of
approximating a wide range of nonlinear functions without restrictive assump-
tions (Bishop, 1995; White, 1990). The quality of the approximation depends
on the complexity of the model. It can be controlled by varying the number of
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hidden nodes and trying different combinations of input variables, or by pe-
nalizing the weights between the units of the network in some sense (Anders
and Korn, 1999; Gallinari and Cibas, 1999).

The amount of collected data has increased substantially in many applications
and this trend is likely to continue in the future. As a consequence, a lot of in-
put variables are typically available for learning the input-output relationship.
Input selection in regression means identifying the input variables that are use-
ful in predicting the values of the output variables. Three objectives motivate
input selection (Guyon and Elisseeff, 2003). First, generalization capability
may be increased. It is often unwise to include all the available input variables
in the multilayer perceptron, because useless variables increase the likelihood
of overfitting (Zhang, 2007). Second, cost-effective models are obtained. It is
faster to fit the models and if measuring of the variables is expensive economic
savings are achieved. Third, understanding of the underlying process that has
generated the data is improved, since useless variables are dropped from the
model.

The input selection methods can be divided into three classes, which are filter,
wrapper, and embedded approaches (Blum and Langley, 1997; Guyon and Elis-
seeff, 2003; Kohavi and John, 1997). In the filter approach, the input selection
procedure is independent from the fitting of the final prediction model, which
is typically nonlinear (here the multilayer perceptron). In the first phase, a
subset of input variables is identified using, for example, techniques that exist
for linear models (Bi et al., 2003; Tikka et al., 2006) or linear-in-the-parameter
models (Li and Peng, 2007). A model-free technique, such as mutual informa-
tion maximization (François et al., 2007), is another possibility. In the second
phase, the final prediction model is fitted using the selected input variables.
The filter approach is computationally tractable, since the input selection pro-
cess is fast and the final prediction model is fitted only once. On the other
hand, the subset of input variables that is found to be optimal in the first
phase may not be optimal in the second phase.

In the wrapper approach, input variable subsets are ranked according to some
estimate of generalization capability of the model (Kohavi and John, 1997).
Cross-validation error is an often used estimate. The variable selection pro-
cess is supported by a general-purpose search algorithm that proposes promis-
ing combinations. Forward selection and backward elimination are the most
typical search algorithms. The performance of the final prediction model is
optimized directly, which is advantageous over the two-phase filter approach.
However, the wrapper approach is computationally more complex, because the
potentially time-consuming model fitting has to be performed several times.

In the embedded approach, input selection is incorporated as a part of the
fitting process. It is highly specific to the model structure compared with the
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more universal wrapper approach, where the model is treated as a black box.
In the context of multilayer perceptrons, variable selection can be seen as
a special case of network pruning (Castellano and Fanelli, 2000; Hassibi and
Stork, 1993; Le Cun et al., 1990). It provides a sequence of simplified networks
without refitting from scratch for every variable subset investigated. Certain
penalization techniques offer another more direct category of embedded meth-
ods. The model fitting is penalized in such a way that the parameters associ-
ated with some input variables become zero during the optimization process.
Such techniques have been proposed for multilayer perceptrons (Chapados
and Bengio, 2001; Grandvalet and Canu, 1999) and radial basis function net-
works (Tikka, 2007). Estimated generalization capability, for example, can be
used to determine the stopping condition in network pruning and the optimal
amount of penalization in direct methods. The embedded approach is usually
computationally much lighter than the wrapper approach.

In this article, a simultaneous input variable and hidden node selection tech-
nique for the multilayer perceptron is proposed. The technique belongs to
the category of direct embedded methods. The proposed cost function bears
similarity to the well-known weight decay penalization (Bishop, 1995). It is,
however, conceptually closer to input decay (Chapados and Bengio, 2001),
which aims at forcing all the outcoming weights of useless input variables to-
gether close to zero. The proposed penalty function differs from weight decay
and input decay in being capable of producing groups of exactly zero weights.
It can, thereby, remove some input variables and hidden nodes completely
from the network. The theory that supports this property is originally de-
rived in the context of a multiple response linear regression model (Similä,
2007; Similä and Tikka, 2007). Such a model supplemented with a nonlinear
activation function constitutes one layer of the network, which makes the the-
ory applicable to the multilayer perceptron as well. The maximum number
of hidden nodes is given in advance, but only some of them are active in the
network after the optimization process. Existing approaches to simultaneous
input variable and hidden node selection operate by adding or deleting units
of the network one-by-one (Steppe et al., 1996; Rivals and Personnaz, 2003;
Yacoub and Bennani, 2000). In contrast, the proposed method is defined as
an optimization problem of continuous-valued parameters.

The rest of the article is organized as follows. Section 2 starts by a short
introduction to the multilayer perceptron. It is followed by a presentation
of the proposed cost function and detailed analysis of its optimization. The
results of experiments on three benchmark data sets are given in Section 3.
Section 4 concludes the article.
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Fig. 1. The architecture of a one-hidden-layer network. Thick lines represent the
outcoming weights of the ith input variable (left) and the jth hidden node (right).
The bias terms w
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0 are not visible. The proposed penalization technique
aims at forcing all the outcoming weights of useless units together to zero, so some
input variables and hidden nodes are completely removed from the network.

2 Methods

2.1 Multilayer Perceptron

The multilayer perceptron is a standard method for representing nonlinear
mappings between input variables x and output variables y. It is a network
of successive layers that aim at transforming the input variables so that the
resulting model f(x) would predict the output variables accurately. Fig. 1
depicts the architecture of a multilayer perceptron. The first layer consists of
linear combinations of the input variables which are transformed by an activa-
tion function. The successive (hidden) layers operate in the same way with the
only difference that they process the outcoming signals of the previous layer.
The model f(x) is parameterized by the weights of the linear combinations
w. A mathematical description of the multilayer perceptron is presented in
Appendix A and a complete discussion is given by Bishop (1995).

There are several free parameters in the architecture of a multilayer percep-
tron. The types of activation functions and the number of hidden layers must
be determined. A standard choice, which is also adopted in this article, is to
use the hyperbolic tangent activation function. In the case of a regression task,
however, the activation functions are linear in the last layer. It can be shown
that such networks with only a single hidden layer can approximate arbitrarily
well any functional continuous mapping from one finite-dimensional space to
another, provided that the number of hidden nodes is sufficiently large (Hornik
et al., 1989, 1990). Despite this beautiful theoretical property, it is very diffi-
cult to give a general rule for the sufficient number of hidden nodes in practice.
Another difficulty is to determine the combination of input variables that is
useful in the prediction task. In the remaining of this section, a framework for
combined input variable and hidden node selection is introduced.
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2.2 Penalized Least Squares Fitting

Overfitting is an inherent trouble in nonlinear regression. It means that the
model is very accurate on the training set, but it has poor accuracy on pre-
viously unseen samples of data. To tackle overfitting, it is common to build a
complex enough network and then constrain its flexibility somehow. Such an
approach leads to examining the problem

minimize E(w) + λP (w), (1)

where the parameter λ ≥ 0 controls the tradeoff between the fit on the training
set (maximal at λ = 0) and the simplicity of the network (maximal when λ is
large). The former aspect is measured by the mean squared error function 1

E(w) =
1

N

N
∑

n=1

‖yn − f(xn)‖2, (2)

where the N samples in the training set are indexed by n. The latter aspect
is measured by the penalty function

P (w) =
L

∑

ℓ=1

I(ℓ)
∑

i=1

p(‖w(ℓ)

i ‖), (3)

where it is assumed that x ∈ R
I(1) and there are I(ℓ) nodes in the hidden

layer ℓ ∈ {2, . . . , L}. The expression w
(ℓ)

i denotes the outcoming weights of
the ith unit in the ℓth layer. Note that the bias terms w

(ℓ)

0 are not present
in Eq. (3), so they are free of penalization. The value of λ must be fixed by
cross-validation or related methods so that error function (2) is as minimal as
possible for novel data.

The choice p(s) = s2 leads to weight decay, which is a well-known penalization
technique (Bishop, 1995). It prevents the weights from being far from zero, but
it does not generally force them to be exactly zero. All the weights are penal-
ized in the same way, since penalty function (3) is simply the sum of squares.
Thereby, the weight decay penalization does not change the architecture of
the network in any sense.

Taking any other p(s) that is increasing on s ≥ 0, the outcoming weights
are penalized in groups, as illustrated in Fig. 1. In the context of multilayer
perceptrons, grouped penalization techniques are discussed by Chapados and
Bengio (2001); Grandvalet and Canu (1999). Particularly, the choice p(s) =
s2/(η + s2) with η > 0 leads to input decay (Chapados and Bengio, 2001).

1 Throughout the article, ‖ · ‖ denotes the L2-vector-norm defined as the square
root of the component sum of squares.
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Fig. 2. The mapping p(‖w(ℓ)

i ‖) in the bivariate case using the function
p(s) = c log(1 + s/c). The value of c > 0 is doubled in each subfigure from left
to right. The degree of concavity decreases in the same direction. Note the nondif-
ferentiability at the origin, which is the key to sparsity.

It does not either change the architecture in a strict sense, because p(s) is
nearly quadratic for small nonnegative values of s. Actually, with a large η,
input decay resembles weight decay. As η approaches zero, p(s) approaches
the step function. This finally encourages sparsity, but at the same time the
optimization becomes more difficult. Chapados and Bengio (2001) only present
the penalization of outcoming weights of the input variables, but there should
be no restraints on covering the hidden nodes as well.

In order to discard unnecessary units of the network, the corresponding block
norms ‖w(ℓ)

i ‖ must be exactly zero. Assuming that p(s) is differentiable on
s ≥ 0, penalty function (3) encourages blockwise sparse solutions to prob-
lem (1) only when p′(0) > 0 holds, as it has been shown by Similä (2007). For
example, the Group Lasso penalization (Bakin, 1999; Yuan and Lin, 2006) is
linear with p′(s) ≡ 1 and it satisfies this condition. On the other hand, both
input decay and weight decay have p′(0) = 0 and they fail to produce sparse
solutions. A disadvantage of the sparsity condition p′(0) > 0 is that penalty
function (3) becomes nondifferentiable at certain points, so problem (1) cannot
simply be solved with gradient-based methods.

In this article, it is proposed to use the function

p(s) = c log(1 + s/c) (4)

with c > 0 to perform simultaneous input selection and node pruning. The
sparsity condition holds, because we have p′(0) = 1. Fig. 2 illustrates func-
tion (4). The strict concavity of p(s) on s ≥ 0 is important, since it reduces the
unnecessary modeling bias when the true unknown value of ‖w(ℓ)

i ‖ is large (Fan
and Li, 2001). The parameter c controls the degree of concavity, which is the
strongest with small positive values. In the limit, as c → ∞, function (4) ap-
proaches the Group Lasso function p(s) = s. The main contributions of this
article are penalty function (4) and an efficient optimization method that is
introduced next.
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2.3 Optimization

The mapping p(‖w(ℓ)

i ‖) is nondifferentiable at the origin when the proposed
function p(s), as defined in Eq. (4) and illustrated in Fig. 2, is applied. Prob-
lem (1) cannot be solved directly using gradient-based methods for λ > 0 in
that case. To overcome the difficulty, a slightly modified problem

minimize E(w) + λ
L

∑

ℓ=1

I(ℓ)
∑

i=1

p(s(ℓ)

i )

subject to s(ℓ)

i ≥ ‖w(ℓ)

i ‖

(5)

is considered. Here, s(ℓ)

i denotes a slack variable. Since p(s) is increasing, the
constraints must hold with equality at the solution. This notice highlights the
close connection between problems (1) and (5). The latter one is, however,
significantly easier to solve, because it consists of a differentiable objective
and convex cone constraints.

Problem (5) can be approximated by the unconstrained minimization of the
logarithmic barrier reformulation

Q(w, s) = E(w) + λ
L

∑

ℓ=1

I(ℓ)
∑

i=1

p(s(ℓ)

i ) − µ
L

∑

ℓ=1

I(ℓ)
∑

i=1

log((s(ℓ)

i )2 − ‖w(ℓ)

i ‖2). (6)

The parameter µ > 0 determines the quality of the approximation such that
small positive values correspond to the highest accuracy. Function (6) is differ-
entiable, because the cone constraints are squared on both sides before feeding
into the logarithmic barrier function. More details about the barrier approach
to inequality constrained optimization are given by Boyd and Vanderberghe
(2004). Any gradient-based method could be applied to minimize function (6)
with respect to w and s. However, as will be explained shortly, it is possible
to get rid of the slack variables completely so that the gradients need to be
taken with respect to w only.

Function (6) is separable in the slack variables, so its partial derivative with
respect to one slack variable

∂Q(w, s)

∂s(ℓ)

i

=
λc

c + s(ℓ)

i

−
2µs(ℓ)

i

(s(ℓ)

i )2 − ‖w(ℓ)

i ‖2
(7)

does not depend on the others. For a fixed w, the stationary points of func-
tion (6) can be found by requiring derivative (7) to be zero for all the slacks.
This corresponds to computing the roots of quadratic equations. Assuming

7



0 < µ < 1
2
λc, the only zero point of derivative (7) on s(ℓ)

i > ‖w(ℓ)

i ‖ is

ŝ(ℓ)

i =
µ +

√

µ2 + (λ − 2µ/c)λ‖w(ℓ)

i ‖2

λ − 2µ/c
, (8)

because λ > 0 and c > 0. It is straightforward to compute the second-order
partial derivative of function (6) with respect to s(ℓ)

i and see that it is positive
at ŝ(ℓ)

i . As an important consequence, treating w as a constant, Eq. (8) gives
the unique minimum point of function (6) on the feasible domain 2 in a closed
form.

In order to minimize function (6) with respect to both w and s, it suffices
to minimize function Q̂(w) = Q(w, ŝ(w)) with respect to w, where the slack
variables depend on w through Eq. (8). Among a wide variety of choices,
the scaled conjugate gradient algorithm (Møller, 1993) is used in the experi-
ments in Section 3. The algorithm requires the objective function Q̂(w) and
its partial derivatives

∂Q̂(w)

∂w
(ℓ)

i

=
∂E(w)

∂w
(ℓ)

i

+
λc

ŝ(ℓ)

i (c + ŝ(ℓ)

i )
w

(ℓ)

i (9)

for i = 1, . . . , I(ℓ) and ℓ = 1, . . . , L. The partial derivative of Q̂(w) with
respect to the bias term w

(ℓ)

0 is simply ∂
∂w0

(ℓ) E(w). The value of µ is decreased

logarithmically in fifteen steps from 1
3
λc to 10−8 in the course of iteration.

One hundred iterations are performed for each value of µ, which makes 1500
iterations in total. Each time the value of µ is changed the conjugate direction
is reinitialized to the steepest descent direction. The computational complexity
of one iteration with the proposed penalty function is practically the same as
with weight decay and input decay. Since we fix the number iterations with
all the penalty functions to 1500 in the experiments of the next section, there
are no differences in computation times.

3 Experiments

The performance of multilayer perceptrons that are trained using the proposed
penalty function (see Eqs. (3) and (4)) is illustrated and compared to the input
decay and weight decay approaches. The same type of penalization is applied
to the outcoming weights of all units of a network. This differs from the original
input decay (Chapados and Bengio, 2001), where only the outcoming weights

2 There are no explicit constraints in the minimization of function (6), but the
logarithm is only defined for positive values.
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of input variables are penalized. Three benchmark data sets are used, which
can all be downloaded from the Delve data repository 3 .

The first data set is called Pumadyn and it is from a realistic simulation of
the dynamics of a Puma 560 robot arm. The task is to predict the angular
acceleration of one of the arm’s links using 32 input variables. They represent
angular positions, velocities, and torques of the robot arm. It is known that
the dependencies are nonlinear and the amount of noise is high.

The second data set is called Add10 and it has been introduced by Fried-
man (1991). The data set consists of ten input variables and a single output
variable, which is generated from the model

y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε, (10)

where ε is Gaussian noise with zero mean and unit variance. The input vari-
ables are sampled independently from a uniform distribution in the range
xi ∈ [0, 1]. Observe that the output variable does not depend on the last five
input variables, which are thereby irrelevant.

The third data set is a collection of computer system activity measures. The
computer was used in a multi-user environment. The objective is to predict
the portion of time that the central processing unit was in the user mode.
There are 21 input variables available for the prediction task.

In each of the three data sets, the first one thousand samples are used as a
training set, the following one thousand samples as a validation set, and the
rest of the samples as a test set. Over six thousand samples are left to the test
set in each case. The values of all variables are scaled to have zero mean and
unit variance before the analysis.

The networks are evaluated using 40 values of the penalty parameter λ, which
are equally spaced on a logarithmic scale in the ranges [0.005, 0.5], [10−6, 0.8],
and [10−5, 0.5], in the cases of Pumadyn, Add10, and Computer data, respec-
tively. The same values of λ are used for all choices of penalization. In the
proposed penalty function, the following values are used for the concavity pa-
rameter c ∈ {0.1, 0.3, 0.7, 1.5, 4, 100}. The value c = 100 already approximates
the Group Lasso function p(s) = s very closely. Input decay is applied with
the parameter values η ∈ {0.01, 0.09, 0.3, 0.8, 2, 7}. All networks have an input
layer and one hidden layer (L = 2) and the number of available hidden nodes
is I(2) = 10. The Nguyen-Widrow method (Nguyen and Widrow, 1990) is
applied to initialize the weights of a network. The initialization and the sub-
sequent optimization are repeated five times in order to avoid local minima.
The weights resulting in the smallest mean squared error on the training set

3 http://www.cs.toronto.edu/∼delve/data/datasets.html
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Fig. 3. Mean squared validation error (top), the number of selected input variables
(middle), and the number of selected hidden nodes (bottom) for different values
of the concavity parameter c as a function of the penalty parameter λ in the case
of Pumadyn data. Markers indicate the positions of the minimum mean squared
validation errors in each subfigure.

are included in further analysis.

A unit of the network (an input variable or a hidden node) is considered to be
useless if the L∞-norm (the largest entry in absolute values) of its outcoming
weights w

(ℓ)

i is less than 0.01 after the optimization process. The threshold is
not a parameter of the penalized least squares approach that is introduced in
Section 2, but it is needed in the illustration and comparisons to be presented
in the remaining of this section.

3.1 Illustration

The performance of the proposed method is shown in Fig. 3 for Pumadyn data
with different values of the concavity parameter c. Two things happen when
the value of c is increased. Firstly, the minimum validation errors deteriorate.
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Table 1
Mean squared errors and standard deviations of the squared errors (in parenthe-
ses) on test data for networks, which have the minimum mean squared errors on
validation data.

Method, p(s) Pumadyn Add10 Computer

Weight decay, s2 0.52(0.74) 0.05(0.07) 0.02(0.05)

Input decay, s2/(η + s2) 0.39(0.56) 0.04(0.06) 0.02(0.05)

Proposed, c log(1 + s/c) 0.38(0.54) 0.04(0.06) 0.02(0.05)

Table 2
The number of selected input variables (the 1st value) and hidden nodes (the 2nd
value) in networks, which have the minimum mean squared errors on validation
data.

Method, p(s) Pumadyn Add10 Computer

Weight decay, s2 32 | 8 10 | 10 21 | 9

Input decay, s2/(η + s2) 2 | 3 8 | 8 21 | 10

Proposed, c log(1 + s/c) 2 | 3 10 | 7 18 | 7

Secondly, the networks corresponding to these minimum validation errors be-
come less penalized, that is, the minima are obtained with smaller values of
the penalty parameter λ. As a consequence, more input variables become se-
lected with large values of c. The difference in the number of selected input
variables between the choices c = 0.1 and c = 100 is notable; three variables
versus 21 variables. The networks with small values of c are able to use the
selected input variables more efficiently.

Regardless of the value of c, the number of selected hidden nodes increases very
rapidly when the value of λ goes below a certain level. However, for each value
of c, the number of selected hidden nodes is three in all the networks, which
have the smallest validation errors. The results of this illustrative experiment
imply that the advantage of using a small value of c is twofold. Prediction
accuracy increases and the number of selected input variables decreases.

3.2 Comparisons

The prediction errors on the test sets are presented in Table 1. All the meth-
ods are approximately equally accurate in the cases of Add10 and Computer
activity data. On Pumadyn data, the proposed method and input decay have
smaller errors than weight decay has, although the standard deviations are
relatively large. The proposed method is also competitive in terms of predic-
tion accuracy with several other nonlinear methods, which have been applied
to Pumadyn data (Orr et al., 2000). However, the results are not fully compa-
rable, since Orr et al. (2000) have a slightly different setup in the experiments.
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Fig. 4. Mean squared validation error (dash-dotted line) and the number of selected
input variables (solid line) as a function of the penalty parameter λ for Add10 data.
The concavity parameter has the value c = 0.1, but the curves look similar for
the five other values as well. Markers indicate the position of the minimum mean
squared validation error. The relevant five input variables are selected in the range
of λ from 0.01 to 0.2.

Table 2 presents the number of selected input variables and the number of
selected hidden nodes in the networks, which produce the minimum validation
errors. The networks optimized with the weight decay penalization always
include all the input variables. The outcoming weights of the hidden nodes
are slightly below the threshold for two nodes and one node in the cases of
Pumadyn and Computer data, respectively. Weight decay clearly produces
more complex networks than the two other methods in terms of the number
of effective units.

The proposed method and input decay suggest an identical architecture of
the network for Pumadyn data. Input decay needs a few more hidden nodes
than the proposed method does in the cases of Add10 and Computer data.
Both methods have difficulties in discarding input variables from these two
data sets. This is inconvenient, particularly because it is known that only
the first five input variables are relevant in Add10 data. There exists a clear
functional input-output mapping and the amount of noise is low, which makes
the validation error curve flat below a certain value of λ, as shown in Fig. 4.
Thereby, the problem concerns rather model selection than input selection.
Choosing a larger λ for which the validation error is practically identical to
the minimum value results in a network with only the relevant variables.

Tables 3 and 4 show further comparisons on Add10 data, where the number
of samples and the degree of noise are changed. The parameters c = 0.1 and
η = 0.01 are used for the proposed method and input decay, respectively. These
data sets are harder to model than the original Add10 data and overfitting
happens for small positive values of λ. For this reason, the minimum validation
networks that have been penalized by the proposed and input decay functions
are heavily pruned, but they mostly include the relevant five input variables.
Input decay and the proposed method are more accurate than weight decay.
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4 Conclusions

We have presented a method that penalizes the weights of a multilayer per-
ceptron during the fitting process in such a way that unnecessary input vari-
ables and hidden nodes are removed from the network. Unlike the sequential
pruning approaches, the proposed method is defined more directly as an op-
timization problem of continuous-valued parameters. The analyst starts by
constructing a complex enough network that includes all the input variables.
The amount of penalization and, optionally, the shape of the penalty function
are the only free parameters that the analyst needs to tune based on valida-
tion data. Experimental results on three benchmark data sets show that the
proposed penalization method results in an equivalent or better generalization
capability than the weight decay and input decay penalization methods, yet
being able to simplify the architecture of the network.

A Mathematical Description of the Multilayer Perceptron

Initialize z(0) = x. The outcoming signals of successive layers can be defined
by the recursion

z(ℓ) = φ(ℓ)([w(ℓ)

1 , · · · ,w(ℓ)

I(ℓ)]z
(ℓ−1) + w

(ℓ)

0 ) (A.1)

for ℓ = 1, . . . , L. The complete network constitutes the model f(x) = z(L). The
activation functions are differentiable and componentwise such that [φ(ℓ)(u)]i =
φ(ℓ)

i (ui).
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