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ABSTRACT. In this paper, we discuss the issue of conceptualization.
The traditional view is that concepts are essentially linguistic. Re-
cently, Gérdenfors has proposed a contradicting view stating that the
concepts get associated to language terms, but essentially belong into
other domain called conceptual spaces defined by quality dimensions.
These dimensions form meaningful representations of the concept do-
mains in hand and they should be formable by mappings from the
sensory input and possibly from other more basic quality dimensions
as well.

In the space spanned by the quality dimensions, natural concepts
form convex regions. The borders of these regions can be hard or soft
and can vary according to the context. In the present work, we have
decided to code the regions by prototypes, so that instances closest
to a particular prototype in the conceptual space form a region. In
other words, the regions are defined by the Voronoi tessallations of
the prototypes, which later define hard-bordered regions. In the case
of soft borders, the prototypes can consist of probabilistic density
fiinctions defining graded membership function for each point in the
conceptual space.

"This paper explores the idea of quality dimensions by trying to
realize contextual categorization in such a domain. That is, trying
to form prototypes and regions. As addition, the connections to the
lower, connectionist level and to the higher, symbolic level are dis-
cussed briefly.

1 Introduction

Intelligent systems generalize and compress the complex input they receive
through their perceptual organs. This is clearly necessary to survive in a
complex and potentially hostile world. Human beings have an exceptional
capacity to utilize this process. We often rise from the basic regularities of
the world to more abstract interpretations. This makes it possible to exploit
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even very distant (in time or place) similarities to make effective predictions
of the state of the world. Another trait of humans is the capability for com-
plex communication. Probably, to attain robustness, this communication
in general takes place using discrete symbols, words.

Until now, a very central issue in artificial intelligence (Al is arguably the
relation between these very central traits: effective modeling of the world
(accessed by sensory organs) and effective communication of the relevant
parts of these models (language).

The traditional view, formulated by Newell & Simon [Newell et al., 1958]
is that we are physical symbol manipulating systems. This is to claim that
the models we have of the world, are essentially linguistic. The modern
view relies on dynamic systems theory [Kelso, 1995]. It claims that symbols
emerge from dynamic interaction processes.

Connectionism is regarded to be a specific version of this dynamic hy-
pothesis [Van Gelder, 1995]. The connectionist paradigm for Al gained
popularity, in the early 90’s, mainly through the books by the PDP re-
search group [McClelland et al., 1987; Kohonen, 1984). They argued that
human information processing is mainly continuous not discrete. Further-
more, the essential feature of human intelligence is learning, thus making
the conceptual system a dynamic process rather than a static one.

One drawback of most of the connectionist algorithms is their distributed
knowledge representation, which does not allow explicit interpretations of
the inference process. That is why these systems are sometimes referred to
as “blackboxes”. A famous example is the NetTalk system from Seinowski
and Rosenberg, a multi-layerd perceptron capable of reading English texts.
The system was trained in a supervised manner with text as input and
corresponding phonemes as output. Although achieving an accuracy of
95% the neural network did not extract rules for the decision making, that
could be interpreted by linguistic processing. This example underlines the
gap between the connectionist models and symbol manipulation systems.

Connectionism can be interpreted as a special case of associationism us-
ing ANN (Artificial Neural Networks). Gérdenfors [Gardenfors, 2000] has
presented a new level on top of these neural models trying to reach the sym-
bolic level processes that humans are naturally capable of. The model being
functional, Gardenfors states that conceptual spaces can be seen as a set of
attractor points of dynamic systems. Yet, his model retains the possibility
of classical symbol manipulation with the three-level-model: 1) connection-
ism as the lowest, 2) conceptual spaces in between, and 3) classical symbol
manipulation as the highest level.

Domains in conceptual spaces are an attempt to give functional and con-
textual focus for otherwise ambiguous symbolic level. One concept can be
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evaluated in several domains using different salience weights, where as prop-
erties are domain specific. Scale of the particular dimension in a domain is
obtained using contrast classes. In another words, the continuous mapping
to the subspace is performed within the boundaries of contextual extreme
values. For example, what is considered to be (phenomenological) hot for
bathing water is merely warm for coffee. In general, different abstractions
are created with the corresponding quality dimensions having specific met-
rics. '

This article does not try to rescue the idea of quality dimensions from
its weaknesses. Most importantly, the satisfactory explanation of how these
domains and quality dimensions come about is missing from [Gérdenfors,
2000], Here the dimensions are taken as given, assuming that some of them
result from innate biological structures with evolutionary background. This
is of course not true to all dimensions that are more abstract and which can
" be learned.

In conceptual spaces, (natural) concepts are defined as {convex) regions!.
Voronoi tessellations necessarily result in convex spaces when Euclidean
metrics is used. Voronoi tessellation partitions given space based on pro-
totypical attractors. Clustering methods tackle the reverse problem, by
defining regions which detect the prototypes.

The nature of a concept in conceptual spaces is

1. prototypical, coding of the structure

2. regional, geometric area instead of points (objects are very narrow con-
cepts, perhaps even points), this makes the concepts vague or fuzzy,
which relates to frame theory

In a sense, prototype and frame theory are combined here.

As addition to concept borders, there are also other reasons for modeling
vagueness in concept formation and communication. Our dynamic scheme
is thought to have three interacting parties: 1) cognitive concepts (including
laws of psychology), 2) language and social interaction, and 3) phenomenal
common world (including laws of physics). These entities have influence
on the prototypes, and their connection is considered to be a source of
impreciseness or fuzziness.

Next section explains further what is meant by dynamical hypothesis,
followed by two sections discussing how conceptual spaces model extends
this, relying first on traditional prototypes and second on convex regions.
After that, in section 2 we review two clustering methods, as well as discuss

! According to Géirdenfors, natural concepts are the only concepts that can participate
in inductive reasoning.
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the possibility to combine similar concepts into more general concepts cor-
responding to larger regions in the conceptual space. Finally, in section 3
we apply these clustering methods to divide a space with color quality di-
mensions into concepts according to two images differing in characteristics.

1.1 Dynamical hypothesis

As a result from the ability to adapt to the environment and learn from
experiences, our concepts change in time. Considering this, it would be
implausible to assume nativist perspective for conceptual modeling and use
innate rules for all categorization. Instead some rules, namely learning rules,
could be used to guide the concept formation process, but not the concepts
itself. |

Concepts are assumed to emerge through self-organization process guided
by top-down (global) and bottom-up (local} influence. The dichotomy re-
sults from modeling levels, where complex global behavior emerges from
local interaction of simple and homogenous elements [Van Gelder, 1995)].
For instance, the limitations of short-term memory could be seen as bound-
ary condition for conscious analyzes of features of an object. In conceptual
domain, it would seem natural for the regions to influence the location of
prototypes and vice versa, until stable categories are obtained.

The challenge of an emergence theory is to explain the relationship be-
tween the chosen levels. By the definition, it is impossible to witness more
global phenomena from the local level, but according to microreductionism
(weak version of emergentism, [Buchmann, 2001]) top-down constraints are
result of bottom-up effects. In fact, there is no level with ontological prior-
ity according to constructive reductionism [Kelso, 1995). However, in this
case the relationship between distributed neural level and symbols need
not to be merely descriptive, and that is not what the mentioned three-
party-interaction scheme implies. The existence of a symbol that groups
observations naturally affects perception. This can take form of Categorical
Perception to concept borders [Harnad et al., 1991] or paradigm shift [Kuhn,
1996) to entire conceptual system. The effect of symbols becomes more ap-
parent in next section with the notion of prototypicality.

1.2 Prototype theory

Prototype theory was formulated by Rosch and got started from findings
relating to typicality (not yet having prototypical structure) among the
category members. Findings of Rosch and Mervis [Rosch and Mervis, 1975
emphasized typicality as opposed to all category members representing the
category equally. Rosch [Rosch and Lloyd, 1978] found that there are more
typical members that are learned faster and serve as cognitive reference. The
membership was considered to be graded and it was shown not to result from
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frequency or familiarity of the particular test items. The correlations with
frequencies turned out to be useful in many cases, but not definitive. As an
exception, chicken is frequent, but not typical bird. The results of Rosch
& al. [Rosch et al., 1976] supported this finding, but only when structural
relations between items were held constant.

After that, the characterizing properties were the target of the research.
First, Wittgenstein’s family resemblance rate was found to describe cate-
gories better. There were no explicit definitions, but similarities between
individual group members, that could be modeled with locally similar cells.
Second, exclusiveness (not total) was also proposed as typicality measure.
Then the typicality would not only relate to the features of particular group,
but also to the shortage of important features from other groups (con-
trast category). This is the phenomenon that Gardenfors’ [Gardenfors,
2000] quality dimensions are explained to obtain their scaling. Contrast
categories are difficult to verify empirically, because it would involve all
the (other) categories. Third, it was found that broader knowledge struc-
tures and top-down processing play their part in this as well. For example
functionalities can be inherited to sub-categories [Rosch and Mervis, 1975].
Barsalou [Barsalou, 1985] later repeated the related experiments.

The actual prototype theory was based on one summary representation of
all the members, not as commonly misunderstood on the best match. Based
on psychological experiments, Strauss [Strauss, 1979] proposed a method,
in which features of the prototype should be averaged if their distribution is
small and counted distinctively if it is sparse. The counting was explained
by subject’s interpretation as qualitative differences, not on one continuous
axis. There is an analogy to how Géaardenfors’ dimensions evolve from
integral, having correlation, to distinct separable dimensions, for example
when child learns to separate shape from color. Feature correlations are
method for applying prototypes and correlations alone are not sufficient
for categorization. In terms of conceptual spaces, after arbitrary mapping,
any two points in space can be close to each other. It has been claimed
that people use hierarchical clusters. The intermediate groupings effect the
typicalities, for example the statement that robin is a typical bird may be
overlooking the fact that it is small, chirping, worm- or seed-eating tree bird
[Malt and Smith, 1984].

Rosch [Rosch and Lloyd, 1978] describes the vertical dimension of the
structure as taxonomy of category relations. There is inclusiveness of sub-
ordinate (lower-level) through basic level into superordinate {higher-level).
The basic level categories is a topic with much empirical research. Read
more from [Rosch and Lloyd, 1978]. The horizontal dimension is segmented
structure without clear-cut boundaries. There is only the judgment for
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clearness of the case, the prototypicality.

There has been the idea of using probabilities to increase the accuracy
of categorization and for example Churchland [Churchland, 1989] uses term
warranty for uncertainty of chosen prototype. Experiments of Ross and
Murphy [Ross and Murphy, 1996] showed that this was not actually ac-
counted and turned the focus on preciseness of categorization.

There should be discussion about to what extent can human cognition be
modeled with prototypes or with ANN (Artificial Neural Networks) algo-
rithms. It is argued that theories should be verified using the evidence from
psychological research, instead of mere speculations. Some of such attempts
to find the limitations of the prototype theory in the past are exemplar ef-
fect of context model (started by Medin & Schaffer [Medin and Schaffer,
1978]) and the research on human memory, and different models about the
use of background knowledge (e.g. [Murphy and Medin, 1985], read more
from “Theory-Theory” in [Laurence and Margolis, 1999})

A vector in ANN model as Roschian prototype represents a summary of
all the members of the cell, and not the best match. The prototype theory
does not provide any model for the process, representation or learning. It
only presents constraints and a possibility to deal with abstractions without
any context. One of such constraints or descriptions is that there is cor-
relation structure of the neighbors in nature of family resemblance [Rosch
and Lloyd, 1978]. For instance, this is the way in which input of SOM [Ko-
honen, 1984] map is connected, because it gives emphasis on retaining the
local level structure. There is no explicit way to define how SOM creates
the model vectors, because the process is a result from heuristic principles.
Neither is there any evidence there should be such for prototype theory.
For example independent cue model [Medin and Schaffer, 1978] is only one
ineffective implementation.

2 Discovering regions in conceptual spaces

Identifying concepts with regions in the space already adds an element of
vagueness to the conceptual representation, because it subsumes objects
x € R? with a variety of different attributes as one concept.

It is argued that there is a another vague element, namely that objects
do not utterly belong to concepts or putting it in probabilistic terms, there
are varying probabilities with which different objects are explained by a
concept. Then the hard margins of the regions, representing concepts, in the
plainly geometric approach make it difficult to incorporate this vagueness.
A possible solution is to define a probability distribution in the conceptual
space, that itself corresponds to a concept.

Finding the regions can be solved by clustering methods, but it is as
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well necessary to infer how many clusters are needed, and in an dynamical
environment, the decision whether to split or combine regions, respectively
concepts, arises. This question can be partly solved by hierarchical cluster-
ing methods or moving to Bayesian versions of clustering algorithms that
give evidence on the model complexity, e.g. the number of concepts needed.

In the following sections we discuss three methods for finding these re-
. gions and defining a vague concept in them. It is assumed that the objects,
perceived in nature or encountered in a more abstract way in our mind, are
represented in as points in a conceptual space [Gardenfors, 2000].

2.1 K-means clustering

The k-means clustering algorithm [Bishop, 1995] moves a chosen number of
k cluster centers, so that they cover the whole data and thereby partitioning
it for 1 € [1, k] into subsets S;, defined by their center f; and containing the
N; nearest data points. It does it via minimizing the sum-of-squares error
function,

k

E = > > llen—ull’ (1)

i=1nes;

but other distance measures can be used as well. The batch version of
the algorithm has an update rule Ay, = n(x, — ;) quite similar to that
of SOM, only lacking the neighborhood function. With the help of the
mean vectors a Voronoi tessellation can be found, as used by Gérdenfors for
concept representation.

The defined regions are vague representations of concepts. But if the
euclidean distance is used to identify the k nearest neighbors or even a
tessellation, than there are hard margin between concepts, which does not
seem to be a natural representation.

2.2 Density estimation

As shown in [Bishop, 1995) the k-mean algorithm can be regarded as a limit
of the EM optimization of a Gaussian mizture model (MOG) with a common
variance, when 02 — 0. In a Gaussian mixture model the probability density
of the data p(x) = ]—[:Ll p(x,,) is modeled as a weighted sum of Gaussians

k

plzn) =D p(@a|i)p(i). (2)

=1
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with a soft max prior p(i) = ﬁ’f—&% and p(x,|i}) ~ N (p;,0;). The
negative log-likelihood of the data :

N k
—log(p(z)) = — > _log { ‘Ep(wnli)p(i)} (3)
n=1 =1 '

can be used as an error function. Finding the minimum by setting the
derivatives for p;, 62 and +; to zero and using the the Bayes’ theorem to

get the corresponding posterior p(i|x,) = P%%@, the following updating
rules can be derived
D DA “
s = Sapllmole gl
/ ey o O
s 1 .
pE) = = ;p(ZIwn) (6)

Due to the nonlinear dependencies in the equation a iterative update scheme
is used to solve the problem. Start ing with random initial values for the
parameters and then calculating the posterior and the new parameter values.
It can be shown that repeating this process will converge to a maximum
likelihood solution.

Applying this algorithm to points in a conceptual space results in a prob-
ability density function that covers the structure of the points arrangement
in the space. This distribution can be identified with a certain concept,
where the mean vectors of the Gaussian mixture components are prototype
like examples of them. The individual Gaussians can represent more de-
tailed sub-concepts. But still remains the question of how many centers
shall be used.

Another unsolved problem is that, when operating the algorithm on every
object of the conceptual space one large MOG distribution will result and
therefore only one concept. So one has to use the clustering in a hierarchical
way. For example first tessellate in a crude way to find different concepts
using the k-means algorithm and than find the distributions in the cluster
with the help of a Gaussian mixture model.

2.3 Hierarchical clustering

Instead of applying the above mentioned clustering methods repeatedly one
can utilize a hierarchical clustering in the first place. A possible class of
methods are called single linkage algorithms for a detailed description see
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[Rohlf, 1982]. These algorithm start by treating every data point as one
cluster and than combine the “most similar” according to the used metric.
This is done repeatedly using minimum, maximum, the average distance
or the distance of the centers of gravity? for comparing clusters containing
more than one data point, and thereby creating a hierarchical structure.

The lower branches in the hierarchy can be cut away, meeting the con-
cerns of difference only to a certain level of detail. But how is it then that a
concept generating process in an intelligent system could find a level that is
meaningful to use? There are two answers at hand: (1) just use any detail
level for a start, and then, by a process similar to natural selection in living
creatures or maximizing the model evidence in Al, it will turn out to be
more useful to go into a more detailed version of the concepts or to thin
them out and therefore have broader concepts; (ii) in a Bayesian version of
the clustering algorithms, in spirit closer to density estimation, it is possible
to combine the data likelihood with a prior distribution, representing the
anticipation for the number of concepts needed, which can itself result from
previous knowledge and experience in the world, and hence get a posterior
probability distribution over the needed number of concepts.

2.4 Bayesian mixture model

Deriving concepts from available facts, e.g. sensory data and existing knowl-
edge of the world - in this case represented in conceptual spaces, is an infer-
ential task with statistical properties, resulting from the irregularities in the
frequency of the data and the incertitude of the already gained knowledge,
respectively.

A mathematical framework for describing statistical inference problems
is the Bayesian statistics, where a basic idea is to interpret the probability
of an event as the degree of belief on the occurrence of that event. Learning
the attributes @ of a model structure H e.g. the shape and location of the
gaussians forming the distribution associated with a concept, is achieved
by combining prior knowledge, described by a distribution indicating the
believe in certain facts, with new information from data =z, described by a
likelihood of the data given the learned quantity and the model structure.
A possibility to calculate the posterior distribution of the attributes, which
combines old and new knowledge is given by Bayes’ theorem

p(x|6, H)p(6|H)
p(elH)

p(f|x, H) (7)

with p(|H) = [ p(2|0)p(0|H)dO being known as the model evidence. This

2This relates to discussions in prototype theory about which set member, if any (as
Roschian prototype theory suggests) should be used as the representative.
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integral over all possible parameter values is, for difficult distributions not
always solvable, but maximizing it with respect to H would lead to more
optimal model structures. -

This calculation of the posterior can be conducted each time new data ig
available and if the posterior distribution of the former inference step is used
as the prior in the next execution of the Bayes’ rule, it will lead to an adap-
tive learning mechanism. An intelligent system acting in a new environment
and starting to conceptualize from scratch might in some circumstances not
have prior knowledge for the shape of concepts, and therefor the categoriza-
tion of the new and unknown. Still it is possible to define non-informative
priors, that do not influence the finding of the posterior for the attributes,
but “let the data speak for its self”.

As mentioned earlier, one can express the density estimation problem in
the bayesian framework (see [Attias, 2000] for a detailed derivation). One
advantage is that this treatment allows searching for optimal model struc-
ture, e.g. the number of gaussians in the mixture model, whereas this is not
feasible in the ML solution (paragraph 2.2) without empirical regularization
terms. This is due to the fact that the ML solution from the EM algorithm
prefers more complex model structures, that fit better to the data.

The approach in [Attias, 2000] is from the structure of the algorithm
related to EM, but utilizes a helpful technique in bayesian inference called
variational learning. There the posterior distribution of the parameter,
that is often complicated to calculate, due to the difficult integral in (7), is
approximated by a distribution with desired properties. In the case where
the best model structure should be determined the requirement is that the
approximate model evindence needed to optimize the number of gaussian
components can be obtained in closed form.

It should be mentioned that there are many other model selection tech-
niques like bootstrapping [Efron and Tibshirani, 1993], cross-validation,
Markov-Chain-Monte Carlo sampling and Bayesian Information Criterion
(BIC), see [Gelman et al., 2003], which all somehow work in practice, but
most of them are theoretically only justified for infinite data sets, whereas
concepts can certainly emerge from only few examples.

3 Clustering of color spaces for concepts

As a simple example, the conceptualization of colors in two pictures, orig-
inating from a landscape in summer and winter, was studied. Choosing
these pictures it can be expected that the process of conceptualization in
our model depends on the encountered examples, a peculiarity of concept
forming, that can be observed in the real world, e.g. considering various
ethnic groups, that divide the color spectrum into differently detailed colors
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[Bornstein, 1973; Hardin, 1993).

The color code for the pixel elements of the pictures is the hue-saturation-
value color map, which is a intuitive representation for humans. The colors
are coded with three numbers, firstly the hue, ranging from 0 to 360 de-
gree in a circular arrangement and indicating the color type according to
its wavelength, secondly the saturation or intensity between 0-100%, telling
how grayish the color is and finally the value in percentage, that tells the
brightness or the spread of wavelength. The hsv color space is redundant
because there exists white and black for every color. Therefore, a color spin-
dle instead of the cylinder in HSV model has been suggested [Kamvysselis
and. Marina, 1999]. It is achieved by reducing the range of the saturation
linearly as the intensity approaches 0 or 100%. This modified color code
has been used in the experiments and the intervals were scaled to unity.

A representative set of the data points for the summer and winter pic-
tures can be seen in Figures 1 and 2 respectively. The prototypes for the
MOG model, i.e., the means of the Gaussians have been marked there with
x’s as well. As expected, the MOG model has used more resources that
is, more prototypes to account for areas having more data points. Observ-
ing that they cover the distribution of the color samples quite well, the
corresponding colors can be expected to cover the coloring, present in the
picture, appropriately. But the results depend completely on how many
initial mixture components are chosen.

Thus the clusters given by the EM algorithm were further combined to
bigger clusters by the hierarchical linkage algorithm. The resulting colors
as well as the hierarchy can be seem in Figsures 1 and 2 for the summer
and winter pictures respectively. Now one can see the grouping of different
shades of white an brown to a more general concept of the color.

Definite differences in the prototype colors can be seen. While the clusters
formed from the summer picture have several shades of green and dark gray,
the colors in the winter picture are concentrated in lighter shades of gray
and white.

[More inferences of the results are made, when we have the results of the
spindle model. Now there are, for example, very dark colors that do not
appear to be close to each others. This is due to the significant difference
in the hue.]

4 Discussion

We issued some implementation aspects left open by Géardenfors’ Concep-
tual spaces [Gardenfors, 2000]. We mainly discussed the formation of the
concepts as regions in a given conceptual space. The significance of these
results to the understanding of actual implementation of human intelligence
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Figure 1. The color vectors of the summer picture with 27 centers for a
mixture of Gaussian model after 30 iterations of training with EM algorithm.

05 >

saturation 00 hue

Figure 2. The color vectors of the winter picture with 27 centers for a
mixture of Gaussian model after 30 iterations of training with EM algorithm.
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Figure 3. The 27 colors of the summer picture in a dendrogram.

Figure 4. The 27 colors of the winter picture in a dendrogram.
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might be questionable or at least modest. However, the central contribution
of this paper does not lie therein, but in simulation of the intelligence as an
Al project.

We only paid attention to the categorization in already acquired concep-
tual spaces. We now discuss in brief the connection of the conceptual level
to the connectionist, namely the acquisition of the quality dimensions, and
the symbolic levels, namely thought processes and language.

A natural way to connect the conceptual level to the basic sensory input
level is provided by the connectionist approach. The quality dimensions are
determined by the sensory input as well as possibly some other more basic
quality dimensions using a flexible nonlinear mapping. However, Gérdenfors
usually takes the.quality dimensions as given, though clearly this cannot be
true for all concepts. The principles guiding the learning are not easy to
state, because they should include at least, capacity constraints, general-
ization of properties and finally, the relevance of different structures in the
sensory data for the particular task the concepts are needed for.

Dynamical interaction framework was described as a starting point to
explain the emergence of concepts. One possible way to advance into the
direction of dynamic systems theories is to have behavioral models with dis-
crete attractor basins (e.g. energy minima) [Cariani, 2001]. Kelso [Kelso,
1995] has studied these extensively and hinted that such basins could be
interpret as prototypes. This is significant, because prototype theory itself
does not deal with learning or concept formation, but only structure.

Furthermore, to really bridge the conceptual level to the symbolic level,
one needs to explain the relation between the acquired concepts and lan-
guage. We see it plausible to assume that language terms get associated to
the regions in the conceptual spaces, that is concepts. Then concepts that
get instantiated due to sensory input or voluntary thought processes may
trigger the use of language, internally or in a speech act.

Another property of concepts in the influence of natural language, is
their context sensitivity. As an example, one could think of the different
meanings of hot when going to sauna o) having fever. Gardenfors suggests
that by a magnification or scaling of the quality dimensions (see the skin
color example on page 119f of [Gardenfors, 2000]) could amount to this
property. In the bayesian framework context sensitivity can be achieved
by the use of different priors, that modify the mean and variance of the
gaussians to meant the contextual environment.
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