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ABSTRACT

In large-vocabulary speech recognition systems, the major part of

memory resources is typically consumed by a large n-gram language

model. Representing the language model compactly is important in

recognition systems targeted for small devices with limited mem-

ory resources. This paper extends the compressed language model

structure proposed earlier by Whittaker and Raj. By separating n-

grams that are prefixes to longer n-grams, redundant information can

be omitted. Experiments on English 4-gram models and Finnish 6-

gram models show that extended structure can achieve up to 30 %

lossless memory reductions when compared to baseline structure of

Whittaker and Raj.

Index Terms— Data structures, Speech recognition, Natural

languages, Modeling, Data compression

1. INTRODUCTION

The major part of memory consumption of large-vocabulary contin-

uous speech recognition systems is usually due to the size of sta-

tistical language models. Especially, in general recognition tasks

where the vocabulary or topic can not be restricted, the recognition

accuracy can be improved by obtaining larger text corpora and train-

ing larger language models. While the memory resources are often

not the main concern in research systems, consumer systems have

to take the memory issues into account. Thus representing the lan-

guage models efficiently affects the recognition accuracy directly on

systems with limited memory resources.

Entropy pruning [1] is a widely used method for reducing the

number of language model parameters. Full n-gram statistics can be

reduced considerably before recognition accuracy starts to degrade.

Another approach for reducing the number of parameters is to grow

models incrementally [2]. Goodman and Gao [3] have shown that

combining pruning and clustering can reduce the number of param-

eters further. Whittaker and Raj [4, 5, 6], on the other hand, have pro-

posed several lossless and lossy compression methods for storing the

language model parameters efficiently while maintaining reasonable

access times. Olsen and Oria [7] have compressed 2-gram models

by using codebooks for probability distributions.

This paper presents an extension to compressed data structure of

Whittaker and Raj. The baseline structure and compression methods

are presented in Section 2 and the extended structure in Section 3.

Section 4 presents experiments with discussion.
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Fig. 1. The baseline tree structure.

2. BASELINE STRUCTURE

2.1. Back-off language model

In the rest of the paper, we assume that the language model is rep-

resented in a common back-off format. An back-off m-gram model

M is a tuple (V, G, αM, βM), where

• V is the set of symbols (usually whole words or sub-word

units)

• G = (G1 ∪ · · · ∪ Gm) is the set of n-grams stored explicitly

in the model.

• αM : G → R is a table of log-probabilities of the n-grams

stored explicitly in the model,

• βM : G → R is a table of logarithmic back-off weights of

the n-grams stored explicitly in the model.

This corresponds to the widely used back-off structure introduced

by Katz [8]. Given an arbitrary n-gram wn

1 = (w1, . . . , wn), the

conditional log-probability log Pr(wn|w
n−1

1
) is computed from the

model recursively as follows:
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2.2. Baseline tree structure

The tree structure used by Whittaker and Raj is illustrated in Fig-

ure 1. The n-grams of different orders are stored in separate tables,

and higher-order tables are accessed through lower-order tables. A

row in n’th table correspond to an n-gram wn

1 = (w1, . . . wn). Each

table contains the following arrays:



1. The index of the word wn. This array is not required for 1-

grams, if we assume that 1-gram table contains a row for each

word in vocabulary

2. The log-probability αM(wn

1 ).

3. The back-off weight βM(wn

1 ). By the definition of the back-

off model, this field is not required at the highest-order.

4. A boundary index. It indicates where is the last child of the

row in the next table. More specifically, it is first row (in the

next table) after (n + 1)-grams that have wn

1 as prefix, i.e.,

n-grams (w1, . . . , wn, ·). Naturally, the boundary values can

be omitted from the highest-order table.

For example, imagine we want to fetch αM(in, front, of, the) from

the structure shown in Figure 1. We start at the first table, and

move to row r corresponding to word in (the black row in the fig-

ure). Boundary values of rows r and r − 1 indicate the range for

2-grams (in, ·) in the second table. In that range, we search the row

corresponding to word front. Assuming that the rows of the range are

sorted according to the word indices, the desired row can be found

efficiently by binary search. Again we look at the boundary values

and proceed further through the third table to the fourth table. Fi-

nally, the probability field of the row corresponding to the word the

gives αM(in, front, of, the). The main benefit of the above struc-

ture is that branches can be represented very compactly—by a single

value per parent node.

2.3. Compressing the fields

In each array, every row has the same bit-width to allow for constant-

time access to an arbitrary row. For each array, we can choose the

minimum number of bits that can represent all values. For example,

if word indices varied between 0 and 8 428, only 14 bits would be

required for the word index array (log
2
8428 ≈ 13.04).

Probability values and back-off weights are usually represented

as 32-bit floating point values in computer systems. However, 32

bits is more than enough for storing parameters of typical n-gram

language models. Whittaker and Raj showed that the probabilities

and back-off weights can be quantized even down to 8 bits before

the quantization degrades speech recognition results [5].

Whittaker and Raj also described a general method for com-

pressing sorted integer arrays [6], which can be used to compress

boundary values and word indices. In the original paper, the com-

putational overhead of the integer compression was not evaluated,

but the access time should be roughly logarithmic with respect to

length of the array. Without the compression the access time would

naturally be constant. In this paper, the boundary array compression

is used, but the word index compression is omitted in order to keep

the structures and experiments simpler. The effect of the omission is

discussed in more detail in Section 4.2.

3. EXTENDED STRUCTURE

In the baseline structure, the back-off weight and boundary value

arrays can be omitted from the highest order because there are no

higher-order children. However, there are also childless rows on the

lower orders, but we have to store a back-off weight (log-zero) and

boundary value (same as the previous boundary value) anyway. This

overhead becomes especially evident with entropy pruned models,

since typically high-order n-grams get pruned more easily, and many

childless n-grams are left at the lower orders.

Instead of storing two values (the back-off weight and boundary

value) for every row, it may be more efficient to store a single pointer
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Fig. 2. Extended structure for orders n and n + 1. The arrays of

each order have been split into two parts (modified arrays shown in

bold). Back-off and boundary values are stored only for rows that

have children, but pointers are needed to access them.

value for every row, and omit childless rows from the back-off and

boundary arrays as shown in Figure 2. The pointer value simply tells

the index to use for back-off and boundary arrays. If row r is child-

less, the pointer value ptr(r) = ptr(r − 1). Otherwise, the pointer

value ptr(r) = ptr(r − 1) + 1. Since the pointer arrays are always

sorted, they can be compressed in the same way as boundary arrays

using Whittaker and Raj’s integer compression. The reader may no-

tice that the pointer array could be represented by one bit per row

(indicating whether the value is greater than previous). However, re-

trieving the values from the array would then be unreasonably slow:

linear with respect to length of the array.

For some orders, the extended structure may actually consume

more memory, in which case the order is stored in the baseline for-

mat. If integer compression is used, the amount of compression

achieved by the extended structure is hard to predict without build-

ing the structure, but experimental results presented in Section 4 shed

light on the issue. Also computational issues are discussed there.

4. EXPERIMENTS

4.1. Setup

The efficiency of the extended structure was evaluated on English

and Finnish language models.

The English models were trained using the New York Times par-

tition of the English Gigaword corpus [9]. 927 million words were

used for training, and 197 thousand words for computing perplex-

ities. The vocabulary was limited to 50000 words, and a 4-gram

model was trained with Good-Turing smoothing.

The Finnish models were trained on the Kielipankki corpus,

available from CSC [10]. The training set contained 145 million

words from newspapers, magazines and books. The evaluation set

contained 149 thousand words. Before training the language mod-

els, the words were split into 8428 sub-word units using the Morfes-

sor algorithm [11]. Splitting the words into smaller units improves

the language modeling performance considerably in Finnish and can

avoid the problem of out-of-vocabulary words [12]. A 6-gram model

was trained with Good-Turing smoothing.

For both languages, entropy pruning was used for producing

smaller models with pruning thresholds 10−9, 10−8 and 10−7. The

SRI Language Modeling Toolkit [13] was used for training and prun-

ing. The Finnish models were trained with the default cut-off values:

all n-grams occurring only once were ignored for n > 2. In the En-

glish case, 4-grams occurring only twice were also ignored.



Pruning Baseline Extended Saving Compression /

(MB) (MB) (%) Float bits

10−7 14.3 11.9 17.2 yes / 8

10−8 128.5 116.6 9.2 yes / 8

10−9 463.3 418.9 9.6 yes / 8

none 637.8 582.0 8.7 yes / 8

10−7 20.7 19.1 7.8 no / 8

10−8 183.4 183.4 0.0 no / 8

10−9 666.7 666.7 0.0 no / 8

none 920.6 920.6 0.0 no / 8

10−7 20.7 15.8 23.7 yes / 16

10−8 182.5 156.3 14.4 yes / 16

10−9 654.8 558.9 14.6 yes / 16

none 899.5 776.5 13.7 yes / 16

10−7 27.1 23.1 15.0 no / 16

10−8 237.5 229.5 3.4 no / 16

10−9 858.2 829.5 3.3 no / 16

none 1182.4 1150.8 2.7 no / 16

10−7 33.5 23.7 29.2 yes / 32

10−8 290.7 235.5 19.0 yes / 32

10−9 1037.7 838.8 19.2 yes / 32

none 1423.0 1165.5 18.1 yes / 32

10−7 39.9 31.0 22.4 no / 32

10−8 345.7 310.9 10.1 no / 32

10−9 1241.2 1109.4 10.6 no / 32

none 1705.8 1539.8 9.7 no / 32

Table 1. English models: Comparing the sizes of the baseline and

extended structures, and the relative saving obtained by using ex-

tended structure instead of the baseline structure.

The compression performance of the structures was evaluated by

computing the memory footprint depending on the entropy pruning

threshold, quantization level of the floating point values, and whether

integer array compression was applied. English results are shown in

Table 1, and Finnish results in Table 2.

The computational efficiency of the structures was evaluated by

measuring the CPU time required for computing the perplexity of

the test data. The perplexity computation was repeated 20 times to

get robust measurements. Table 3 shows the results. The perplexities

of the models and the number of n-grams are shown in Table 4.

The C++ source code for the software used in the experiments is

available for download at http://www.cis.hut.fi/thirsima/. The pack-

age contains tools and libraries for compressing n-gram models in

baseline and extended structures, and using them in applications.

4.2. Discussion

A few clear trends can be seen in Tables 1 and 2. Firstly, the more

entropy pruning is applied, the more relative savings can be achieved

by the extended structure. This trend is quite natural since entropy

pruning creates more childless n-grams on lower orders, and the

extended structure specifically tries to represent childless n-grams

compactly. However, there are some differences between the lan-

guages. In the Finnish case, the extended structure does not seem to

achieve any compression on the unpruned models, but in the English

case it does. The reason is that higher cut-off values were used in

training English models which corresponds to moderate initial prun-

ing on the highest orders. Without the higher cut-offs, training En-

glish 4-gram models would have taken too much memory.

The second trend is that saving decreases when less bits are used

Pruning Baseline Extended Saving Compression /

(MB) (MB) (%) Float bits

10−7 8.8 7.2 18.3 yes / 8

10−8 52.4 44.8 14.4 yes / 8

10−9 201.8 190.3 5.7 yes / 8

none 407.3 407.0 0.1 yes / 8

10−7 12.8 11.9 6.9 no / 8

10−8 78.8 76.2 3.3 no / 8

10−9 303.2 303.2 0.0 no / 8

none 580.5 580.5 0.0 no / 8

10−7 13.0 9.8 24.8 yes / 16

10−8 76.8 60.9 20.6 yes / 16

10−9 293.2 261.7 10.8 yes / 16

none 582.4 581.5 0.1 yes / 16

10−7 17.0 14.6 14.2 no / 16

10−8 103.2 94.2 8.7 no / 16

10−9 394.5 387.3 1.8 no / 16

none 755.6 755.6 0.0 no / 16

10−7 21.5 15.0 30.1 yes / 32

10−8 125.6 93.2 25.8 yes / 32

10−9 475.9 402.3 15.5 yes / 32

none 932.6 904.7 3.0 yes / 32

10−7 25.5 19.8 22.2 no / 32

10−8 152.0 126.8 16.6 no / 32

10−9 577.3 543.8 5.8 no / 32

none 1105.8 1105.4 0.0 no / 32

Table 2. Finnish models: Comparing the sizes of the baseline and

extended structures, and the relative saving obtained by using ex-

tended structure instead of the baseline structure.

for floating point values, i.e., probabilities and back-off weights. The

effect of this quantization is twofold. The less bits are used for back-

off weight values, the less saving the extended structure can achieve

by omitting redundant back-off weights βM from the childless n-

grams. On the other hand, the less bits are used for the probabilities

αM, the smaller are the models overall, and the greater is the relative

benefit from the extended structure, because probabilities are needed

for all n-grams in both structures.

The third trend is that integer compression increases the rela-

tive compression of the extended structure. This is largely because

the pointer arrays are sorted arrays whose values grow slowly, and

the general integer compression seems to be very efficient on such

arrays.

As mentioned in Section 2.3, the word index compression was

not used in the experiments to keep the structures simpler. Since

the extended structure deals only with back-off and boundary arrays,

the word indices could be compressed normally. That would lead to

smaller models overall, and the extended structure would give rela-

tively better compression ratios.

In Table 3 we can see that the computational overhead of the

extended structure depends on whether integer compression is used

or not. Without compression, the additional pointer array introduces

minimal overhead, but after compression, the overhead becomes vis-

ible, since accessing the compressed pointer array is roughly loga-

rithmic with respect to the length of the array. It must be noted that

the straightforward implementations could certainly be optimized

further for both compressed and uncompressed structures, so the

computational comparison is only suggestive. In speech recognition

systems, the access to the main n-gram language model is usually



Pruning Baseline Extended Overhead Compression

(s) (s) (%)

10−7 85.37 102.62 20.21 yes

10−8 103.48 143.88 39.04 yes

10−9 133.69 185.29 38.60 yes

none 171.55 248.49 44.85 yes

10−7 28.41 30.16 6.16 no

10−8 36.55 38.45 5.20 no

10−9 44.08 44.47 0.88 no

none 47.15 47.81 1.40 no

Table 3. Computational cost of the structures when computing per-

plexity of Finnish models with 32 bits per float.

English Finnish

Pruning Perplexity n-grams Word-perplexity n-grams

(M) (M)

10−7 303 3.3 23 220 2.1

10−8 232 31.1 12 805 12.5

10−9 214 112.4 11 017 50.3

none 212 156.7 10 984 108.2

Table 4. Perplexities and the number of n-grams in the models. The

perplexities of the Finnish models are normalized by the number

of whole words to allow comparisons with other experiments using

possibly other sub-word units for language modeling. The corre-

sponding token perplexities are 26.3, 21.7, 20.6, 20.6.

not the most computationally expensive part of the process, so the

access times of the compressed structures should be reasonable. As

look-ahead language models the compressed structures are probably

not applicable, since they are often accessed very heavily.

Table 4 shows the number of n-grams in the models and the

perplexities on the test set. As usual, the Finnish perplexities are

computed by normalizing the inverse probability with the number

of whole words even if the model uses sub-word units as symbols.

Using this “word-perplexity” makes it possible to compare perplex-

ities with other experiments that may use different sub-word units

for language modeling. The perplexities are naturally large when

compared to English. A single Finnish word often carries the infor-

mation of several English words by compounding words and using

prefixes, suffixes, and inflections.

The order of the language models were chosen as high as possi-

ble with without requiring to use cut-offs or other special techniques

heavily. In the Finnish, however, it is expected that even higher-order

n-grams are useful, when the words are split into smaller units [2]. It

is also probable, that the compression ratio of the extended structure

gets better on higher-order models.

5. CONCLUSION

An extension to a previously proposed method for compressing lan-

guage model structure was presented. By separating n-grams that are

prefixes to longer n-grams, the language models can be represented

more compactly without losing modeling accuracy. In experiments

on English 4-gram models and Finnish 6-gram models, the extended

structure obtained compression ratios between 0–30 % depending

on the entropy pruning threshold, amount of quantization and inte-

ger array compression used in the original models. The best ratios

are obtained on models that have been pruned with entropy pruning.
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