
Extracting Go Game Positions from Photographs

Teemu Hirsimäki∗

Laboratory of Computer and Information Science

Helsinki University of Technology

February 1, 2005

Abstract

Go is an ancient oriental board game played by
two players who place white and black stones
alternately on the intersections of a rectangular
grid. With digital image processing and com-
puter vision methods available today, it should
be possible to devise a system, which follows the
game with a video camera and analyses where
the players place new stones or remove stones.

In this article, I present an automatic system
for analysing still images of go boards. The sys-
tem is able to locate the playing grid and the
stones from the image. The performance of the
system is demonstrated with a few test images,
and the possibilities to extend the analysis to
video streams is discussed.

1 Introduction

Go is a two-player board game which is popular
in oriental countries, but not very widely known
in Europe or America. The game is played by
placing white and black stones alternately on
the intersections of a rectangular 19 × 19 grid,
and trying to capture opponent’s stones while
also surrounding as much territory as possible.
Figure 1 shows a photograph of a go game in
progress.

Recording the moves of a game between two
players is traditionally done manually with a
pencil by marking the number of each move on
a grid on a paper. Nowadays, it is also com-
mon to use a computers to mark the moves with
a mouse, or a pen of a hand-held computer.
However, with the digital image processing and
computer vision techniques available today, one
might consider building a system, which uses a
video camera to capture the whole game and a

∗E-mail: teemu.hirsimaki@iki.fi

Figure 1: A go game after seven moves by both
players.

computer program to analyse the video and infer
where each stone was placed during the game.

In the following sections, we learn how the
first steps of such automatic recording system
can be built with relatively simple digital image
processing and optimisation techniques. Instead
of dealing with video stream, the task is here
limited to analysing still images of a go games
and trying to locate the playing grid and stones
from the images.

2 Image analysis

2.1 Properties of a go board

Let’s look at Figure 1 and think a little what are
the most important features that make us think
it as an image of a go board? The strongest
cues are evidently the dark lines that form the
playing grid and especially the strict regularity
of the grid. Also, the grid lines are usually on a
relatively homogenous background, but it would
be easy for humans to spot the playing grid even

1

Figure 2: Left: original image I. Right: resulting image IL after filtering with Equation 2 and
cutting negative pixels (dark colours correspond to high intensity).

if it floated in air in front of a coloured back-
ground. A more important thing is that there
are no other strong dark lines intersecting the
grid lines.

There is one problem with relying on the lines,
however. When a go game progresses, stones are
placed on the board, and the grid lines will be
obscured more and more. When the board is
almost completely covered with stones, it would
probably be more sensible to start the analy-
sis by locating stones instead of lines. How-
ever, considering the target application, which
records go games from the beginning to the end,
it makes sense to start with lines, because the
board is always empty at the beginning of the
game. Also, if we can assume that the board
and the camera do not move much during the
game, and the grid is located already at the be-
ginning of the game, it is probably not necessary
to locate the grid from scratch later.

2.2 Detecting the line pixels

The first step of our image analysis is locating
pixels that form the lines of the grid. A common
digital image processing technique called linear

filtering can be used to examine the local prop-
erties of the image pixels. In linear filtering, an
output image O is created from an input image

I by computing each output pixel O(x, y) as a
linear combination of the corresponding input
pixel I(x, y) and its local neighbourhood:

O(x, y) =
∑

(x′,y′)∈N

H(x−x′, y−y′) I(x′, y′) (1)

where the local neighbourhood N and the co-
efficients H define the filter. It is also com-
mon to use rectangular neighbourhoods with
odd number of pixels horizontally and vertically,
so that the filter can be centred around one
pixel. [Sonka et al., 1998, pp. 68–69]

Since the grid of a go board consists of dark
lines on a lighter background, we base our anal-
ysis on this assumption. Pixels that are darker
than their local neighbourhood can be found
with a filter, that has a negative peak in the cen-
tre, and small positive values around the peak.
Setting the filter values so that the their sum
is zero, the filter becomes insensitive to the ab-
solute values of the pixels and responses only
to the value differences. For example, a simple
5 × 5-filter can be defined as follows:

H =

1 1 1 1 1
1 1 1 1 1
1 1 −24 1 1
1 1 1 1 1
1 1 1 1 1

(2)

The effect of the above filter is shown in Fig-
ure 2. On the left, is the original image I, and
on the right is the resulting image IL, which we
refer to as the line image. In addition to filter-
ing with H, the negative values have been set to
zero in order to show the positive responses bet-
ter. The remaining values have been normalised
between zero and one.

Equipped with the line image IL, and know-
ing that we are looking for a projection of a
rectangular 19 × 19 grid, it would be possible
to formulate the task of locating the grid as a
direct optimisation problem. We could try fit-

2

ρ

Hough space

θ

L

Angle

D
is

ta
n
ce

ρ

x

Image space

θ
y

L

Figure 3: Line L in the image space maps to a point in the Hough space.

ting a projected grid on the image and com-
puting, for example, the negative sum of pixel
values along the lines of the grid in IL. Then
the task would be finding a grid position that
minimises the sum. However, it would be very
hard to find the global maximum without addi-
tional information. Thus, before thinking about
the optimisation problem more, let’s introduce
another well-known image processing technique
that helps us in our task.

2.3 Hough transform

Locating pixels that form straight lines can be
done conveniently with the Hough transform. If
we consider a pixel in the filtered image IL for
a moment, we know that the pixel can only be
part of lines that cross the location of the pixel.
This leads to the idea of the Hough transform:
count how many pixels contribute to each pos-
sible line in order to find the strongest lines. All
possible lines in the input image are represented
with two parameters: the angle θ of the normal
of the line, and the distance ρ between the line
and the centre of the image. Figure 3 illustrates
the parameters and the connection between the
image space and the Hough space. Each line in
the image space corresponds to a unique point in
the Hough space. [Sonka et al., 1998, pp. 164–
173]

In practice, the Hough transform is computed
using a accumulator array A(θ, ρ), which quan-
tizes the Hough space. For each non-zero input
pixel (x, y), we consider every quantized angle
θ′ at time, and compute the corresponding dis-

tance ρ(θ′) that makes the line go through the
pixel (x, y). Then the corresponding cell in the
accumulator array, A(θ′, ρ(θ′)), is increased by
the input pixel value at (x, y). After the whole
image is processed, the strongest lines in the im-
age form local maximums in the Hough space.

The left side of Figure 4 shows the Hough
transform IH of the image IL of Figure 2. The
parallel grid lines of the original image can be
seen in the Hough space as a vertical series of
peaks. The lines in the series have almost the
same angle, but not exactly due to the perspec-
tive projection.

With the Hough transform image of Figure 4,
we can start thinking how to actually locate the
playing grid. Since the grid consists of 38 in-
tersecting lines, the first idea might be finding
the 38 strongest maximums in IH . However,
the grid lines are often quite thin and weak
compared to other lines present in the image
and, even though we know that the distance be-
tween parallel grid lines is regular, there might
be other lines just outside the grid that would
fit perfectly in the series of lines: edge of the
board and lines in the tablecloth, for example.
The problem is that the Hough space only con-
tains information about the angle of the line
and its distance from the centre of the image.
It does not give any hints where the lines start
and where they end in the original image. Thus,
in order to separate the grid lines from other
lines, the key is to combine the information in
the Hough image IH and the filtered image IL.

3

Angle (θ)

D
is

ta
nc

e
(ρ

)

0 50 100 150

−300

−200

−100

0

100

200

300

Angle (θ)

D
is

ta
nc

e
(ρ

)

0 50 100 150

−300

−200

−100

0

100

200

300

Figure 4: Left: Hough transform IH computed from the line image IL. The parallel grid lines of
the original image form vertical series of peaks in the Hough space. Right: Filtered version of the
hough transform of the enhanced line image I ′

L.

3 Searching the grid

As briefly mentioned in Section 2.2, our task of
locating the grid from the image can be formu-
lated in a minimisation problem. One difficulty
in finding the global minimum is that we do not
have any good model for things that can appear
outside the go board. There may be bowls and
a clock near the board, and part of the players
might be visible, as in Figure 1. The table and
the table cloth can have arbitrary colours and
textures. If our grid candidate is off the board,
we have little clue in which direction we should
move the grid to approach the desired location.

To alleviate this problem, we do not directly
fit the full 19 × 19 to image IL, but start with
a smaller grid instead. Then it is easier to find
a good initial guess for the grid position, ensure
that the small grid is within the board, and to
fit the grid with the edge image by minimising
the cost function.

3.1 Making the first guess

3.1.1 Preprocessing

Since we are trying to record go games, we as-
sume that most of the centre area of the original
image consist of the go board and hope to find a
good initial grid candidate around the centre of
the image. To follow this assumption, we do an
additional operation to the line image IL before
the Hough transform. After filtering the original
image I with the filter H, and setting the nega-
tive values to zero, we apply a Gaussian weight
function to give more weight to the centre pixels
giving us the image IL′ :

IL′(x, y) = IL(x, y)·

exp

{

(x − x0)
2

2σ2
x

+
(y − y0)

2

2σ2
y

}

(3)

where (x0, y0) is the centre of the image. Setting
the variances σ2

x and σ2
y to quarter of the width

and height of the image seems to be a reasonable
choice.

After transforming IL′ to Hough space we also

4

filter the Hough image with a peak filter similar
to Equation 2 to enhance the peaks. This time
we use a positive peak because we are interested
in locally high values. The resulting image IH′

is shown at the right side of Figure 4.

3.1.2 Locating the peak series

The parallel grid lines of the original image form
almost vertical series of peaks in the Hough im-
age. First we want to find out the approximate
location of the two peak series in the Hough im-
age, i.e., what is the general orientation of the
parallel lines. We do the following steps.

1. Blur the Hough image IH′ temporarily with
a horizontal filter

[

1 1 1 1 1
]

, and
weigh the columns of the image with a
vertical Gaussian using tenth of the image
height as the variance.

2. Compute the sums of the columns to get a
function S(θ) and find its maximum. The
location θ1 of the maximum corresponds to
the approximate location of the first peak
series.

3. Remove the first maximum by setting S(θ)
to zero between θ1−25◦ and θ1+25◦. Then,
find again the maximum of the function.
The corresponding θ2 is the approximate
location of the second peak series.

3.1.3 Selecting the middle peaks

After locating the approximate angles of the
peak series, θ1 and θ2, we locate 12 peaks from
each series around the centre, and choose the 5
at the middle as follows.

1. Take the columns (θi − 10◦), . . . , (θi + 10◦)
from the Hough image IH′ , and weigh the
patch with a horizontal Gaussian using half
of the patch width as the variance.

2. Compute the maximum of each row M(ρ),
and the corresponding angle Mθ(ρ).

3. Then find 12 maximums by doing the fol-
lowing steps 12 times:

(a) Find the maximum of M(ρ), and set
its location to ρi.

(b) Remove the maximum by computing
the median of M(ρ) for |ρ − ρi| < 10,
and zeroing values around ρ1 to both
directions until the value of the func-
tion drops below the median.

4. Then select the 5 median values of the val-
ues ρ1, . . . , ρ12, and get the corresponding
angles with the function Mθ(ρ).

This procedure seems to give reasonable line
candidates for a small 5 × 5 grid. Sometimes,
however, the procedure might miss a line or two
because some grid lines may be very thin. This
can be fixed by computing the distances between
neighbouring lines, and checking if some of the
distances is larger than 1.5 times the smallest
distance. If this is the case, the gap can be filled
by interpolating lines.

3.2 Tuning the grid

We can be now quite sure that the initial grid
is within the actual board, and each of the grid
lines is relatively near to its correct position.
This means that a minimisation method can be
used to tune the positions of the lines to match
the pixels in the line image IL exactly. The clos-
est local minimum should be enough.

3.2.1 Cost function

There are many ways to choose the cost function
for the minimisation. As mentioned earlier, we
are planning to combine information from the
Hough image and the gradient image, so one
possibility is to define the cost function C as a
weighted sum of two terms CL and CH , the costs
computed from the line image and the Hough
image respectively:

C(α) = wCL(α) + (1 − w)CH(α) (4)

where α represents the parameters defining the
grid location, and weight w controls the rela-
tive importance of the terms. The first term
CL(α) is computed by taking pixels that fall un-
der the grid lines in IL, and summing the square
roots of the pixel values. Taking the square root
dampens the very bright values caused by the
stone edges that may have much stronger con-
trast than the grid lines. To compute CH(α),
we normalise IH′ between zero and one, and
take the pixel value corresponding to the line
in question. For w, we use 0.9, which has been
empirically found to be a reasonable choice.

Now the best grid location α̂ can be found by
minimising the cost function:

α̂ = arg min
α

C(α) (5)

= arg min
α

(

wCL(α) + (1 − w)CH(α)
)

(6)

5

Figure 5: Optimising the position and angle of
the topmost horizontal line. Each line is opti-
mised separately by considering a few end points
along the perpendicular border lines.

Note that the above cost function does not
set any restrictions for the shape of the grid as
long as the grid matches the line image and the
Hough image well. Surely, it is possible to define
an additional term that would give penalty if the
lines of the grid deviate too far from a projec-
tion of a rectangular grid. That would probably
make the algorithm more robust in difficult sit-
uations. However, as we will see later, the above
cost function works well for our purposes.

3.2.2 Finding the minimum

Defining the cost function is not enough as such.
We also have to decide how we are going to find
the minimum. Simply optimising each line in
turn does the trick. Figure 5 shows how the end
points of a line are varied along the perpendic-
ular lines. For each line candidate, the value of
the cost function is computed, and the best line
location is selected. A reasonable range for the
end points is half of the distance to the next line.

3.3 Growing the grid

After finding a reasonable initial guess and get-
ting the small grid aligned nicely with the grid
lines, there is still one thing to do: to grow the
grid to full size. When we grow the grid, we
have to take care that the grid does not fall off
the board. The cue for detecting the edge line of
the grid is that perpendicular lines do not con-
tinue over the edge line. This can be checked
by extrapolating the grid in opposite directions,
as illustrated in Figure 6, and computing which
direction matches better with the line image IL.
Simply taking average of the pixels that are cov-
ered by the new line segments (solid line seg-
ments in the figure) and choosing the direction

Figure 6: When grid is grown, the lines are ex-
trapolated in opposite directions (solid lines).
The goodness of a direction is evaluated by look-
ing how well the extrapolated segments fit to the
line image IL.

giving larger average will prevent the grid from
growing outside the board.

Note, that average is only computed over the
short line segments shown in the figure. The
perpendicular line, that would be added to the
end of the line segments, is not included in the
computation for two reasons. If we simply ex-
trapolate the position of the new line without
tuning its position, we might miss the position
of the line. Also, if we already are at the edge of
the grid, the extrapolated line will most likely
fall off the board, and we have no idea what
lies outside the board. With bad luck, there
might be something that actually gives a good
response, and we might make a bad decision.

Now we have all pieces together for locating
the full grid: the line image IL, the enhanced
Hough image IH′ , initial guess for the grid can-
didate, an algorithm for tuning the grid lines
to match the image lines exactly, and an algo-
rithm for growing the grid step by step. After
each step of growing the grid, it is necessary to
repeat the tuning, because the position of the
new lines are computed by extrapolating the old
ones, and especially with perspective distortion,
the extrapolation errors accumulate easily.

3.4 Finding the stones

Assuming that the grid can be located even if
there were stones on the board, we may lastly
try deciding if there are any stones on the board,
and where they are. Here we settle for a very
simplistic approach. For each intersection (i, j)
of the grid, we examine the original image I, in a
5×5 window centred at the position of the inter-
section (xi, yj). From that window we compute
the median of the pixel values, getting a bright-

6

ness value B(i, j). For each intersection, we also
compute the median of the brightness values in
a local 5× 5 neighbourhood: M(i, j). Then the
stones S(i, j) can be decided as follows:

S(i, j) =

white if B(i,j)
M(i,j) > T,

black if M(i,j)
B(i,j) > T,

empty otherwise.

(7)

A good value for the threshold T can be deter-
mined empirically. We will set T to 1.2 for now.

4 Tests and discussion

4.1 Tests

The system described above was implemented in
MATLAB.1 Figures 7–12 show six test images
demonstrating how the system works. In each
figure, the original image is shown at top, and
the analysis of the system is shown below. The
white stones are marked with circles and black
stones with asterisks. The images in Figures 7–
10 have been analysed correctly, one black stone
has been missed in Figure 11, and Figure 12
shows an image on which the system failed, be-
cause it could not find sensible initial lines from
the Hough image, shown also in the figure.

4.2 Problems in detecting lines

As can be seen from the test images, the system
finds the playing grid quite well even if there are
some stones on the board, as long as the most
of the lines are visible. Also, low viewing an-
gles are tolerated. Figure 12 shows perhaps the
biggest weakness of the current approach. The
analysis fails simply because there are too many
stones obscuring the centre lines. The peaks into
Hough image are too weak and the algorithm
fails to find them.

There are a few techniques that might im-
prove the Hough image. If the local line di-
rections were estimated for each pixel in the
line image IL, the information could be taken
into account in the Hough transform, so that
only part of the array cells need to be up-
dated [Sonka et al., 1998, pp. 169]. That would
probably reduce the noise in the Hough im-
age. There are also many variations and ex-
tensions of the Hough transform presented in

1The source code of the system is available for down-
load at http://www.cis.hut.fi/thirsima/gocam/

the literature, that might be more robust to
noise. See, for example, the survey given in
[Kälviäinen et al., 1995].

Whatever method for finding lines is used, the
lines can not be found if the board is completely
covered by the stones. Considering the end ap-
plication, if we can assume that the board and
the camera are not moving during the game, it
is enough to locate the grid in the beginning of
the game and perhaps to only fine tune grid dur-
ing the game. However, if the application should
tolerate moving of the camera, an analysis based
on finding stones would be needed.

4.3 Problems in detecting stones

In Figure 11, for example, we see that the
stones are seldom located exactly at the inter-
sections. Because the stones are lens shaped,
and their thickness can be even half of their
radius, the centres of the stones are elevated
from the board. Additionally, the stones might
have been placed carelessly off the intersections,
which can make the effect even stronger. The
current procedure for finding stones is quite sim-
ple, but seems to work well enough for the test
images. It might be possible to try finding the
centre of the stone before analysing the colour
of stone from a small window, but then it should
be decided if there is a stone on the intersection
in the first place.

The other difficulty in detecting stones is
that the lighting conditions can vary in differ-
ent parts of the board. For this reason, try-
ing to set simple threshold values for white and
black stones is not very robust. The intensity
of the board surface on a brighter part may be
quite close to the intensity of the white stones
in a darker part. Also, black stones may have
surprisingly bright reflections from lamps above
the board. The current median based analysis
seems to be quite robust, but assumes that there
are not too many stones of one colour in the lo-
cal neighbourhood. The most straightforward
way to improve the stone detection algorithm is
probably to use colour images instead of gray-
scale images.

4.4 From still images to video

So far we have analysed only still images, but in
the end application which would analyse video
stream, it would probably be useful to analyse
consecutive frames, too, in order to detect if

7

Figure 7: Test image 1 (320×240): Top: The original image. Bottom: The analysis of the system.
Black stones are marked with asterisks, white stones with circles.

8

Figure 8: Test image 2 (640×480): Top: The original image. Bottom: The analysis of the system.
Black stones are marked with asterisks, white stones with circles.

9

Figure 9: Test image 3 (350×280): Top: The original image. Bottom: The analysis of the system.
Black stones are marked with asterisks, white stones with circles.

10

Figure 10: Test image 4 (440 × 373): Top: The original image. Bottom: The analysis of the
system. Black stones are marked with asterisks, white stones with circles.

11

Figure 11: Test image 5 (790 × 600): Top: The original image. Bottom: The analysis of the
system. Black stones are marked with asterisks, white stones with circles.

12

Angle (θ)

D
is

ta
nc

e
(ρ

)

0 50 100 150

−300

−200

−100

0

100

200

300

Figure 12: Test image 6 (650×522): Top: The original image, which the system could not analyse
correctly. Bottom: The Hough image.

13

the colour around each intersection has changed.
Also, it is perhaps not necessary to do the full
procedure of finding lines and stones for every
frame, if it can be assumed that the board and
the camera do not move much during the record-
ing. Then a separate fast analysis would be nec-
essary to decide if the position on the board has
changed. Also, the system should be able to de-
cide if it is worthwhile to analyse the position
at all. When a player is placing a stone on the
board, the board is partly obscured.

5 Conclusion

All in all, the presented system for analysing
photos of go boards and reading the position on
the board seems to work well. It finds the grid
lines using linear filtering and Hough transform,
and is quite robust if there are not too many
stones on the board. Also, the colours of the
stones can be decided quite well. The current
system is only able to analyse still images, but
extending the system to analyse videos of com-
plete go games seems possible.

References

[Kälviäinen et al., 1995] Kälviäinen, H., Hirvo-
nen, P., Xu, L., and Oja, E. (1995). Prob-
abilistic and non-probabilistic Hough trans-
forms: overview and comparisons. Image and

Vision Computing, 13(4):239–315.

[Sonka et al., 1998] Sonka, M., Hlavac, V., and
Boyle, R. (1998). Image Processing, Analysis,

and Machine Vision. International Thomson
Publishing Inc., 2nd. edition.

14

