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LECTURE 1: 17.1.2007

GENERAL MATTERS
INTRODUCTION
CAN WE LEARN FROM DATA?
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Times, Dates, Locations

• lectures: wed 12-14 in T4, from 17.1.2007 given by
Petteri Pajunen

• exercises: fri 10-12 in T3, from 19.1.2007 given by
Ville Viitaniemi

• contact: t615040@mail.cis.hut.fi (lecturer and
assistant)

• office hour: lecturer on wed 14-15, B309
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Course Material

• no textbook: lecture slides and possibly some other
material will appear on course homepage as the
course proceeds:
http://www.cis.hut.fi/Opinnot/T-61.5040/

• exercise problems will be available on the website
before each exercise session

• solutions will be posted on the website as the course
proceeds
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• a major topic of the course is Bayesian Inference

• for more in-depth information on Bayesian Inference,
one of the following books may be useful:

1 Gelman et al: Bayesian Data Analysis, CRC Press,
1996 (or 2nd ed Chapman & Hall/CRC 2003)

2 Bernardo and Smith: Bayesian Theory, Wiley, 2000

• these are not required reading and do not contain even
half of the topics on the course
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Prerequisites

• prerequisites are basic math courses, especially
probability, matrices and calculus

• some course in modeling data nonlinearly (for
example neural networks or pattern recognition)
would be helpful

• some programming skills are needed for the
computer assignment
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Passing the Course

• final exam+compulsory assignment

• first final exam in May 2007, everyone may take this

• later exams can be taken only after your computer
assignment has been accepted
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Computer Assignment

• instructions will appear on the website by the end of
March

• datasets and “technical support” are available in
MATLAB and R (www.r-project.org)

• but you can use other software/language if you wish

• deadline will be around May/June (announced later)
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Exercises

• some (or many) exercise problems are difficult
and/or not meant to be solved based on what has
been presented at the lectures

• these are intended to illustrate some important ideas
in more detail than is possible in the lectures

• these are marked “demo” in the problem sheet

• other problems are more or less possible to be solved
by yourself, though they may also be difficult...

9



Introduction

• emphasis is on presenting fundamental ideas
through simple examples and counterexamples

• no overly complicated derivations of theoretical
results

• however, somewhat complicated calculations are
unavoidable when applying Bayesian Inference

• most skipped details can be found in the two books
mentioned before, or from references that will be
posted on the website
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• don’t take the course if you want

– lots of algorithms to stick data into without
thinking

– rigorous derivations of theoretical results

• do take the course if you want

– to understand the learning problem (have data,
what to do with it?)

– to understand Bayesian methods at a general level
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• learning: for our purposes, using a given set of
observed data to get information about unobserved
quantities

• for example, predicting something or making an
optimal decision

• this definition of learning covers most situations
where one would like to learn from data in practice

• note that it does not contain algorithms that
represent the data in another way (Fourier transform,
PCA etc..), although these algorithms can be useful
as a part of a learning method
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• example: where to sit in a lecture hall?

– first you try the front row and find that the
temperature is too cold

– next week you try the last row: now the
temperature is too high

– where do you try to sit next week?

– you have data, and are trying to make an optimal
decision using it
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• model: represents the information we have about the
learning problem

• in the lecture hall example, most people have a
model which might be described as “temperature
changes slowly as a function of position”

• without a model, you might as well choose the next
seat randomly

• we will see that learning from a given set of data
without a model (i.e. without assuming anything) is
not possible in any meaningful way
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• modeling data has been done in statistics for a long
time

• but traditionally the lack of computing power has
resulted in:

– realistic but unsolvable models, or

– computable, simple standard models (usually
unrealistic)

• one can run into complicated models quite easily:

– missing data (parts of data are missing in various
ways)

– mixture models (discussed in a later lecture)
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• emerging trend: increasingly complex models for
which approximate solutions can be computed
(neural networks, data mining etc...)

• often these models are “generic” (not constructed for
a specific problem and are often used to solve a wide
variety of problems)

• this approach represents a compromise between a
realistic unsolvable model and a solvable but too
simple model

• reasons for not using the problem-specific correct
model may include computational constraints, not
enough data, model too difficult to solve etc.
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• some wrong intuitions:

– a complex model and lots of data solves all problems
(not so)

– a model and data solves decision problems (not so)

– results of learning from data are objective (not so)

– some learning methods are better on average than
others, assuming nothing about the problems they are
applied to (not so, in a sense to be made clear later)
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• in this course, we deal with the problem of learning
from a given set of data

• in practice, other steps are needed that are often
problem specific

• e.g. what data to collect, how to preprocess it etc..

• sometimes the outcome of system is not unique: for
example, fault detection requires deciding how the
different faults are defined

• most of these extra steps in learning require decision
theory
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• we end up using probabilistic modeling

• suppose we look at a deterministic system that gives
always the output yi when given the input xi

• even in this case there are good reasons to use
probabilities

• first, the system may contain variables that we do not
observe
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• even if the world works in a deterministic way, one
can only model a tiny part of it relevant to the
problem at hand

• examples:

– flipping a coin: measuring the initial speed, direction,
and rotation of the coin, and predicting where it will
land is too difficult

– the change in direction of a moving car: speed and
steering wheel position explain it well, but is also
affected by changes in speed, surface friction and
unevenness etc.

• therefore we will end up using probabilistic models
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Causality

• dependence between inputs and outputs can be one
of the following type:

– output caused by input (steering wheel position
→ direction of car)

– input caused by output (symptoms → illness; the
arrow denotes the system, not causality)

– input and output caused by something else
(consumption of soft drinks, number of people
drowning; both are probably caused by warm
weather)
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– noncausal dependence

• cause of dependence, or anything else that is
unobserved, cannot be learnt from given data unless
one is willing to use a model containing the causality
as a parameter

• without such a model, learning methods can be used
to predict unknown outputs. This does not require
causality.

22



Summary

• no long derivations of theoretical results, no black
box tools

• demonstrate the impossibility of learning from data
without assumptions

• can we learn from data by assuming very little?

• develop probabilistic approach to learning (Bayesian
Inference)

• examine basic properties of Bayesian Inference

• does Statistical Learning Theory say that one can
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learn without assumptions?

• apply Bayesian Inference in various situations

• how to compute approximate solutions

• missing data

• latent variable models

• Gaussian processes

• making decisions
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• goals of the course: to understand

– the impossibility of learning without assumptions

– the difficulties of high dimensional problems

– in what sense probabilistic learning is correct

– how to think about problems using probabilities

– how to do BI in practice

– the need to approximate BI, and some methods to
implement this

– how to make decisions and what this has to do with BI
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Cannot Learn From Data

• if one wants to learn from data, there must be
something to be learned

• define this as θ, state of nature, which is unknown

• set of all possible states of nature is Θ

• θ can also be a parameter of some function or
distribution
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• for practical reasons, lets assume that θ has a
numerical value (can be a vector or a matrix)

• the learning problem is to get information about the
value of θ using data (denote here by D)

• can we say something useful about θ without using
any information except data D?

• when stated this way, it seems obvious that we can’t

• but putting data into an algorithm which is unrelated
to the problem, or is not known to be related, is just
trying to achieve this
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• example: predict output y from a given input x
(regression)

• D = {(x1, y1), . . . , (xn, yn)}, θ = ỹ corresponding to
x̃ 6∈ {x1, . . . , xn}?

• no-brain solution: pick some learning method A,
train it on data D and use it on x̃ to get a predicted
value ỹ
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• you might as well have chosen a different learning
method B

• suppose B gives a different prediction ỹ than method
A

• this is not learning from data: we are deciding the
prediction result as we choose the learning method A
or B (or C,D,E,. . . )

• any learning method contains implicit information
that is combined with data
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• how about using data to select the learning method?

• this sounds reasonable and is often done (e.g. model
selection)

• construct method C so it is identical to A within the
training set and identical to B outside of it

• training data cannot distinguish between A and C, so
we must pick one and decide the prediction again

30



• last straw: A is better than B or C in general, so we
just use A

• sure, we used information “A is best” in addition to
data but this is OK since we can now use A in every
problem and do not need additional information

• this sounds good: just find the “best” learning
method and be done with it

• researchers have certainly looked for it (cybernetics,
neural networks, fuzzy logic, genetic algorithms,
kernel methods etc..)
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• are some learning methods better than others on
average?

• such a method should have a better average
performance than, for example, guessing the
predicted values

• it sounds easy to come up with methods that beat
guessing

• but it is even easier to prove this is impossible, either
rigorously or by simple counterexamples
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No Free Lunch Theorems

• it can be shown (D. Wolpert, No Free Lunch
Theorems) that no information except training data
leads to equal average performance over all learning
methods

• for proofs, see original article(s) (reference on
webpage)

• proofs are somewhat technical so we settle for
examples restricted to predicting bits in the exercise
problems
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• NFL theorems are based on the idea that observed
data without any other information does not restrict
the unobserved data in any way

• no information means “all solutions equally
possible”

• easiest to demonstrate in discrete, finite problems

• consider Θ = {every 4-bit sequence}
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• no information =⇒ every 4-bit sequence equally
possible

• observe first three bits, 010, and predict the last bit

• obviously the last bit is equally likely either 0 or 1

• easy to generalize to n-bit outputs, which essentially
is all that is needed (unless you have an analog
computer or enjoy making decisions with infinite
number of choices)
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• no information was interpreted as having a uniform
distribution over Θ (e.g. over 4-bit sequences)

• NFL theorem =⇒ performance of any learning
method averaged over all problems is constant

• applies even for guessing and other apparently
useless methods!

• intuitively clear, because regardless of training data,
the distribution of non-training data is uniform
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• performance = average over all θ ∈ Θ

• i.e. if method A predicts 1 for the input 010, we count
this as 0 (no error) for θ = 0101 and 1 (error) for
θ = 0100

• average performance is computed using a uniform
distribution over Θ

• one might object that ’real-world’ problems have
’structure’, they are not uniformly distributed as
assumed above
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• another NFL theorem answers the non-uniform
critique

• assume that the distribution over Θ can be
non-uniform

• no information = we don’t know this non-uniform
distribution

• averaging uniformly over all distributions over Θ =⇒
same performance for all learning methods

• interpretation: to learn from data, you have to know
something about the structure of the problem, not
just that it has some
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• NFL-idea seems almost trivial

• it makes clear that no information leads to no
learning, regardless how much data one has

• yet much research seems to rely on this possibility

• heuristics such as cross-validation, Occam’s razor,
Minimum Description Length etc... don’t change the
conclusion
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• in practice one expects to beat guessing

• if the learning method makes use of strong and
correct assumptions, this is possible

• but in some areas such as neurocomputing, implicit
assumptions seem very weak, such as simply
assuming some vague regularity

• weak assumptions might be expected to hold for a
large set of learning problems
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• does a method A exists which beats guessing (B) on a
large set of problems?

• it can be shown that the set of problems where A and
B have even a small difference in performance, is very
small (demo exercise problem)

• all methods are almost as bad as guessing on almost
all problems

• expecting a method to work well, one’s problem
must come from the very small set of problems (a
strong assumption)
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• summary:

– NFL thms =⇒ no information, no learning

– little information =⇒ little benefit from training
data

– good expected performance =⇒ strong, correct
assumption (either implicit or explicit)

– since one must bring a lot of information to the
learning problem, it is preferable to know what is
being assumed

– this motivates the study of probabilistic learning
methods where the assumptions are made
explicitly
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• does this bet sound appealing? It should for those
who believe that information can be extracted from
lots of data

– I generate 106 bits of training data (given to you), and
100 bits of test data (not given)

– you win 1000 EUR if you predict more than 60 bits of
test data correctly

– otherwise you lose 1000 EUR

– this bet should be appealing if you believe your
learning method has better performance than 0.6

– hint: ∑60
k=0 Bin(k|100, 0.5) ≈ 0.982
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LECTURE 2: 24.1.2007

CURSE OF DIMENSIONALITY
OVERFITTING
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• NFL theorems =⇒ no information, no learning

• simple, correct model =⇒ easy to solve with
enough data

• what about learning methods in practice?

• perhaps some information and lots of data leads to
good results?
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Weak Assumptions Lead to Local Learning

• lets examine what happens when a learning method
is expected to contain “weak” information

• for example, it can be argued that a learning method
such as a neural network prefers solutions that are
regular in some sense

• but with a complex enough neural network, one can
approximate closely almost any solution

• sounds plausible: there is some information (prefer
well-behaving solutions) but not too much (many
solutions can be closely approximated)
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• lets examine how well this approach can be expected
to work

• example: regression by kernel density estimation

• predictor of y as a function of x can be solved using
the joint distribution p(x, y) (exercise)

• the solution minimizes the MSE E(|y− ŷ|2)
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• how to estimate p(x, y) from data (xi, yi), i = 1, . . . , n

• one way to estimate it is to use a kernel density
estimator

• a nonnegative localized function with integral 1/n is
located at each (xi, yi)

• the sum of these is the estimate of p(x, y)

48



• replacing p(x, y) by its estimate will give a solution ŷ
as a function of x and training data

• exact result computed in exercises

• ŷ will be a weighted sum of y1, . . . , yn

• the weights are large when xi is close to x and small
when xi is far from x
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• the above solution has the property x is close to xi

=⇒ y is close to yi

• methods such as neural networks in general have
this property

• for example, a large MLP network is a nonlinear
parametric function

• it does not vary very rapidly when input x changes,
but is often flexible enough to provide a good fit to
training points
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• this property seems exactly what we wanted, but it is
useful only near the training points

• local learning is essentially what was achieved

• i.e. the training data cannot be generalized except in a
very small neighbourhood around the training points

• methods such as neural networks do predict outputs
arbitrarily far from training points, but in general
these predictions are not reliable
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• lets examine when local learning works

• demo: local.R

• the correct function is x3, and two high-degree
polynomials are fitted to the data

• the polynomials don’t vary extremely rapidly and
can fit the correct solution exactly

• when 50 points are used, the result is quite good
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• with 10 points used for learning, the solutions differ
from x3 a lot

• the only common feature is that the polynomials pass
through, or close to the training points

• local learning effectively makes the prediction based
on the closest point(s) in the set of observed data

• this is useful only when predicting near enough to a
training point
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• lets consider this geometrically

• training inputs x1, . . . , xn are in a d-dimensional
space

• we want to predict the output at some point x in the
same space

• local learning can be used if x is close to some xi
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• relevant quantities: n (number of training points), d
(dimension of x)

• small d, large n: local learning may be useful

• note that the training data must cover well enough
the area where predictions are needed
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• when d is even moderately large, unexpected things
happen

• this phenomenon is called the Curse of
Dimensionality

• CoD is a geometric concept which describes certain
properties of high-dimensional spaces

• some examples are given to illustrate this
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High-Dimensional Data

• lets examine a d-dimensional vector space (or a
bounded subset of it), and n points in it

• for local learning to work, the points must be close
enough to each other

• curse of dimensionality =⇒ n must be very large if d
is even moderately large
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Uniform density over data space

• consider [0, 1]d, the d-dimensional hypercube

• cover it with points having distance 0.1 to the closest
neighbour

• if d = 1, then ten points achieves this

• but if d = 10, we need about 1010 points for the same
distance

• ten is not a very high dimension in many learning
problems!
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Most points are close to the sides

• consider [0, 1]d, and [0.1, 0.9]d inside of it

• smaller cube seems relatively large: each edge has
length 0.8 versus 1 in the larger cube

• volume of [0, 1]d is one: the volume of [0.1, 0.9]d is
(0.9− 0.1)d = (0.8)d

• for d = 20, this volume is approximately 0.01

• a set can look large in all coordinates separately, but
be small in the whole data space
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Points are far away from each other

• for n points uniformly distributed in [0, 1]d, the
expected L∞ distance of point number 1 to its nearest
neighbour is

D(d, n) ≈
(

1
n

)1/d

• when d grows but n is fixed, this distance converges
to 1 (exact result in exercises)

• almost all points are near the side, and far from each other
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Points tend to be mutually orthogonal

• generate n points from N(0, σ2 Id)

• compute the inner product of n− 1 points with the
first point x

• compare the inner products with ‖x‖2

• result: when d is high, the inner products are small
compared to ‖x‖2

• demo: prohist.R
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• CoD =⇒ local learning is not very useful in high-d
spaces

• learning from data requires more information than
vague regularity

• note that depending on the problem, seemingly weak
information may actually be a strong assumption
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• compare regression with classification

• try to predict bits from observed inputs x ∈ Rd

• this is two-class classification, or regression with
binary outputs

• solving this as a regression problem seems
impossible without lots of information about the
problem
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• but as a classification problem a somewhat regular
discriminant function if often used

• such a discriminant function makes a strong but
usually plausible assumption

• consider two clusters of training data, each
containing data from one class only

• solving a classifier defines the classes of points
arbitrarily far from training data

• an exercise problem considers d = 1 and a “linear”
classifier
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• so far:

– NFL: no information =⇒ no learning

– weak assumptions =⇒ local learning, not useful
in high-d problems

– strong assumptions =⇒ learning is possible, if
assumptions are correct
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Overfitting

• lets examine what happens if a learning method
works by selecting a solution out of a set
{ f (x|θ)|θ ∈ Θ}

• assume the model f (x|θ) is correct, meaning that
data is generated as y = f (x|θ0) + n where n is an
error term

• many learning methods use training data to compute
an estimate θ̂

• the solution is then defined as f (x|θ̂)
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• estimation requires a loss function L(y, f (x|θ)) to
measure how good each θ is

• expected loss (risk) R(θ) = E(L(y, f (x|θ)))

• observed loss (empirical risk)
Remp(θ) = 1

n ∑i L(yi, f (xi|θ))

• often θ̂ is found by minimizing Remp(θ)
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• this loss-framework includes regression,
classification, density estimation, ICA etc...

• if { f (x|θ)|θ ∈ Θ} is “small”, then minimizing Remp

may work

• but many problems require complex models, where
the set of solutions is not small

• large set leads to many values of θ minimizing Remp

• called overfitting: can’t tell solutions apart using only
training data
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• overfitting can happen even if f (x|θ0) is the correct
solution as defined above

• example: linear model

y = µx + β + n, n ∼ N(0, 1)

• this is a standard linear regression model
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• observe outputs y0, y1 at inputs x = 0, x = 1

• fit the model (find µ̂, β̂) by minimizing the squared
error

Remp(β̂, µ̂) = (y0 − β̂)2 + (y1 − µ̂− β̂)2

• the error is simply the sum of squared errors at x = 0
and x = 1
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• predict output at x = 2 as 2µ̂ + β̂

• for comparison, fit a constant model y = β + n

• correct prediction is 2µ + β: we can compare the two
models against this

• depending on µ, sometimes the constant model gets
a smaller mean-square error!

• demo: overfitting.R, and an exercise problem
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• lets illustrate overfitting geometrically

• assume θ ∈ Rd, a d-dimensional space

• consider a training set of m points

• then
y = (y1, . . . , ym) ∈ Rm
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• each θ is mapped to

y(θ) = ( f (x1|θ), f (x2|θ), . . . , f (xm|θ))

• this defines a function f ′ : Rd → Rm

• for simplicity, assume that this function is somewhat
regular
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• suppose d À m: there are lots of functions, but little
data

• f ′ is a mapping from a higher-dimensional space to a
lower-dimensional space

• example: d = 3, m = 2 (“flatten” a cube)

• many θ’s map into a single y(θ)

• since good solution = f ′(θ) close to y, we find too
many solutions

74



• if d ¿ m, then the image of f ′ is a subspace of Rm

• if y is not near this subspace, no solution is very good

• this is called underfitting

• if the simple model is correct, then underfitting is
unlikely
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• if d ∼ m (saying d = m is too simple), the dimensions
“match” and one can generally find a unique solution

• using the correct model is not enough if the learning
method estimates a single value θ from training data

• having too few training points can prevent finding it

76



• lots of heuristic methods have been proposed to
select the right size for { f (x|θ)|θ ∈ Θ}

• e.g. Minimum Description Length, Structural Risk
Minimization

• in most of these, a penalty proportional to model
complexity is added to the loss
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• other heuristics for avoiding overfitting are validation
methods

• part of the data is lost, since it is used only in the
validation step

• note that validation does not help if you strictly have
no information about the learning problem (NFL
again)
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• the above discussion was about solving the learning
problem by selecting a single value for θ (point
estimation) by minimizing Remp

• we will not solve the learning problem this way:
intention was to demonstrate how it leads to
overfitting

• however, many learning methods solve learning
problems in the way described above
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• point estimation, and the heuristics for avoiding
overfitting, have some additional problems

1. usually no uncertainty in θ: the exact value cannot
generally be found using a finite training set

2. overfitting avoidance leads to using the wrong model

3. which heuristic to use? different solutions to exactly
the same problem

• next week, Bayes approach is develop which will
address these problems
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LECTURE 3: 31.1.2007

PROBABILITIES IN LEARNING
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Bayesian Inference

• we have seen that data cannot be generalized
without any information (NFL thms)

• vague assumptions (e.g. weak regularity) do not help
much

• even knowing the correct model may lead to
problems such as overfitting

• solution: represent all information about the learning
problem correctly
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• we will use probabilistic modeling to represent the
information

• can be justified, though not in a universally
acceptable way

• also suggested by situations, where probabilistic
models are obviously correct

• seems that no practical alternative exists (learning
methods with demonstrable shortcomings do not
count)
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Learning Problem Again

• assume there is a variable whose value is unknown

• denote this by θ, and the set of all possible θ’s by Θ

• goal of learning is to get information about θ

• what kind of information we need in addition to
data?
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• lets go through an example that suggests certain
important concepts

• example: what time is it?

• correct but unknown time is θ

• data D is what you read from your watch
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• after looking at your watch, do you know what time
it is?

• not exactly, because no watch can keep infinitely
accurate time

• most of us would expect that the time shown by the
watch is on average θ, but can deviate a little from it

• note that different people probably have a different
description for the possible deviation
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• we must have some information on how D depends
on θ

• this does not come from data and is not objective

• lets pick just one watch: now there is exactly one
learning problem

• the owner of the watch should have the best
information about the accuracy of the watch
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• for example, owner may know that the watch is very
accurate

• then others would underestimate the accuracy

• distribution of D is sharp for an accurate watch and
wide for a less accurate watch
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• what if we just estimate θ̂ = D?

• this may be reasonable if the watch is assumed to be
accurate enough

• but what if the watch says “3 am”?

• we could all go home and get some sleep if we accept
the above solution
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• no one really thinks its 3 am, but why?

• because we have information about θ before looking at
the watch

• this information is also different for each person

• to solve the problem properly, one must make a
compromise between information about the watch
and information about θ
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• information about θ is called prior information

• it should be obvious that such information exists

• past experience about similar problems, perhaps
based on data which is not available anymore

• in the example, several sources of information
(having looked at the watch a while ago, knowing
the time the lecture is given etc..)
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• another problem with the solution θ̂ = D

• if the watch is assumed to be inaccurate, then θ may
be far from D

• as a single number, θ̂ = D carries no information
about this inaccuracy

• in general, result of learning is not a single value for the
unknown θ
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• e.g. you want to catch a bus which departs every
hour

• if D is “14:57” you may decide to try to catch the bus

• but if the watch is very likely to be five minutes late,
it has a strong influence on the decision

• result of learning should describe the remaining
uncertainty in θ
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• many learning methods have some of these elements

• for example, a set of solutions { f (x|θ)} contains
some information about how D depends on θ

• often no “3 am” safeguards: best-fitting θ is usually
selected

• no proper description of remaining uncertainty, at
most confidence intervals
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• in the watch example, we had to come up with two
descriptions of uncertainty

• prior uncertainty: what we know about θ

• how data depends on θ: what we know about D if θ is
given

• in what way should we quantify the uncertainties?
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• probability turns out to be a good measure for
uncertainty

• probabilities will be used (also) for “one-time events”

• example: what is the probability that it rains
tomorrow?

• it is possible to consider such probabilities since the
source of uncertainty is subjective lack of information

• i.e. use of probabilities is not restricted to events
repeatable infinitely many times
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Probability as a Measure of Uncertainty

• probability is the unique measure of uncertainty,
given certain axioms or assumptions

• this can be understood or demonstrated in several
ways:

– by analogy: if something is random when
repeated (e.g. coin toss), its uncertainty is
represented by a probability distribution

– Dutch Book Theorem (Ramsey, de Finetti)

– Cox’s Axioms

98



Betting and Subjective Probability

• what happens if one insists using a non-probability
measure for uncertainty?

• non-probability means that your measure does not
follow the rules of computing with probabilities

• a betting argument shows that a non-probability
measure leads to trouble
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• consider a bet TA which pays the owner 1 EUR if A
happens, otherwise it pays nothing

• you would certainly take the bet for free

• also, you would not pay more than 1 EUR for it in
any situation

• assume that there is a unique limit price (buy below
it and sell above it)
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• denote your limit price for TA as p

• p depends on the actual event A

• lets choose p as an arbitrary non-probability measure
q(A)

• Ramsey and de Finetti showed that using q leads to
irrational behaviour
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• exercise problem shows that a non-probability
measure q(A) leads to accepting a set of bets
guaranteed to make you lose money

• this is called a Dutch Book due to bookmakers
(persons taking bets e.g. in horseracing) who attempt
to set their odds so that whatever happens, they will
win money

• Dutch Book Theorem: the possibility of a set of bets
guaranteed to make you lose money is equivalent to
a non-probability uncertainty system
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Cox’s Axioms

• Cox derived probability as a measure of uncertainty
from a short list of axioms

• further work has reduced and/or changed some of
the axioms and as a result, there are a number of
different derivations

• some key axioms (but not all):

1. uncertainties are real numbers p(A) ∈ R

2. if A and B are equivalent, then p(A) = p(B)

3. for a certain event A, p(A) = 1
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• Dutch Book and Cox’s Axioms support the use of
probability as a measure of uncertainty

• other measures must disagree with at least one of the
axioms

• the main axiom one might not accept is the “single
real number” axiom

• is there uncertainty about uncertainty?
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• there are certain approaches to uncertainty allowing
for “sets of probabilities”

• from a practical point of view, one can add new
unknowns which are used to give information about
θ

• then one can use a probability distribution over all
unknowns

• results in a probability over θ anyway
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• example: coin toss

• unbiased coin: p(heads) = 0.5 and p(tails) = 0.5

• biased coin: “heads” or “tails” has probability 0.75

• suppose your probabilities are 1/3 for “balanced
coin”, 1/3 for “heads more probable” and 1/3 for
“tails more probable”
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• lets compute the total distribution:

p(tails) =
1
3

p(tails | balance)

+
1
3

p(tails | tails probable)

+
1
3

p(tails | heads probable)

=
1
3
∗ 1

2
+

1
3
∗ 3

4
+

1
3
∗ 1

4
=

1
2

• similarly we obtain p(heads) = 1
2

• averaging over the “extra” uncertainty effecticely
removes it
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• same probabilities for unbiased and possibly biased
coin

• do we lose some information here?

• no, if we are to make a decision based on the
probabilities

• any decision, which depends on the outcome of the
toss must be the same in both cases
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• Dutch Book and Cox’s Axioms tell us to use only
probabilities for quantifying uncertainty

• the learning problem is to find out what is known
about θ after data D is observed

• denote this distribution as

p(θ|D, I)

• the “extra” variable I means the information that was
available before looking at the data
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• we omit the variable I from now on, it has no
relevance to any calculations

• it simply denotes the source of subjective
information that will not be used explicitly

• since p(θ|D) is the proper description of uncertainty
about θ, nothing more can be done using only data
and information I

• Bayesian Inference is mainly about computing this
distribution
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• the notation p(A|B) means a conditional probability

• it should be understood as “probability of A, given
that B is known”

• computing with conditional probabilities is
technically easy

• but thinking in terms of them is important but not
always easy (see exercise problems this week)
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• why not use traditional statistics?

• there the emphasis is on the distribution p(D|θ)
(likelihood as a function of θ)

• this is the “uncertainty” of data, given θ

• but data is observed and θ is unknown: p(D|θ)
cannot be used on its own
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• ad-hoc methods are used which are based on taking
averages over all possible data

• e.g. confidence intervals: some interval [ f (D), g(D)]
has 95 percent confidence if it contains θ 95 percent of
the time, averaged over all possible D

• this does not mean that θ is in [ f (D), g(D)] with 95
percent probability for a given D!

• also, p(D|θ) as a function of θ is not a proper
description of uncertainty in θ
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• notice that p(θ|D) is a probability distribution as a
function of θ

• an interval can easily be defined using p(θ|D) so that
it will contain θ with a given probability

• the probability p(D|θ) is very important part in
computing p(θ|D), but it is not enough on its own

• the remaining part is p(θ) which describes the
uncertainty in θ before seeing data
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• since p(θ) can and should be chosen based on
subjective information, its use has caused some
critisism

• but choosing p(D|θ) is also subjective

• avoiding subjective choices is impossible, since the
model comes from information available before
seeing data

• Bayesian inference has some ways of attempting to
obtain objective results (more on this later)
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• example: line fitting

• model: y = µx + β + n where n ∼ N(0, σ2)

• in words, fit a line to data assuming Normally
distributed errors

• unknown θ = (µ, β): it might include σ2, but for now
we assume that it is known
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• what is p(D|θ)?

• data is a set of pairs (xi, yi), i = 1, . . . , n

• if they are independently generated, then

p(D|θ) =
n

∏
i=1

p(xi, yi|θ)

= ∏
i

Ce−
1

2σ2 (yi−µxi−β)2
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• the prior p(θ) depends on what else you assume, and
could be any probability distribution

• note that standard regression methods don’t use p(θ)

• the posterior p(θ|D) is computed next week
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• summary:

– learning requires information about uncertain
quantities

– probability is the right way to quantify this
(according to Dutch Book, Cox’s Axioms)

– both p(θ) and p(D|θ) are subjective

– result of learning is p(θ|D), which is not an
estimate of θ as a single number
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LECTURE 4: 7.2.2007

BAYESIAN INFERENCE

120



• Dutch Book and Cox’s Axioms support using
probability as a measure of uncertainty

• Dutch Book Theorem implies that a measure of
uncertainty must have certain properties, such as

– product rule: p(AB|C) = p(A|BC)p(B|C) (AB
means both events A and B happen)

– sum rule: p(A|B) + p(A|B) = 1 (A means A does
not happen)

– equivalent events: p(A) = p(B) if A and B are
equivalent events

• Cox’s axioms yield the same properties

121



Bayes’ Theorem

• consider uncertain events A and B

• product rule gives

p(BA) = p(B|A)p(A)

p(AB) = p(A|B)p(B)

• AB and BA are equivalent events

• their probabilities must be the same
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• equating p(BA) and p(AB) gives

p(B|A)p(A) = p(A|B)p(B)

• dividing by p(B) gives the Bayes’ Theorem

p(A|B) =
p(B|A)p(A)

p(B)
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• BT allows us to reverse conditional probabilities

• in context of the learning problem, BT can be used
when

– prior uncertainty gives the prior p(θ)

– modeling assumptions give p(D|θ)

• BT results in the posterior distribution

p(θ|D) =
p(D|θ)p(θ)

p(D)
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• constant denominator p(D) is often omitted:

p(θ|D) ∝ p(D|θ)p(θ)

• when necessary, it can be computed as

p(D) =
∫

p(D|θ)p(θ)dθ

• unnormalized posterior can often be used directly
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• how to get p(D|θ) from uncertainty?

• Dutch Book and Cox do not directly give conditional
probabilities

• instead, one can start with the full probability model

p(θ, D)
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• obtained by using all relevant quantities in the
distribution

• Dutch Book and Cox say that this distribution exists

• the full probability model defines all other
probabilites involving θ and D
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• integrate over data (sum rule):

p(θ) =
∫

p(θ, D)dD

• likelihood by the product rule:

p(D|θ) = p(θ, D)/p(θ)

• both are obtained from the full probability model
using rules of computing with probabilities

• in practice, p(θ) and p(D|θ) are usually specified
directly
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• p(D|θ) and p(θ) are specified using the information
available about the problem

• using the Bayes’ Theorem in unnormalized form
gives the posterior as

p(θ|D) ∝ p(D|θ)p(θ)

• posterior quantifies the remaining uncertainty about
θ taking the information in D into account

• this result is unique, if we believe that our
probability model is correct
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• note that p(θ, D) does not have to be “correct” in any
general sense

• correctness here means “correctly quantifies our
subjective information”

• then the posterior correctly quantifies our
information after having seen data D

• practical reasons may justify other learning methods,
but in principle learning proceeds as described above
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• point estimation: many learning methods would give
a single value for θ

• posterior does not define a unique point estimate

• a loss function is normally required (not part of the
probability model)

• e.g. minimum MSE, maximum likelihood

• exception: the posterior is concentrated on a single
value
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• example: cross a bridge with a 10-ton truck

• somehow you believe that the bridge holds 11 tons
with p = 0.8 and 9 tons with p = 0.2

• a reasonable point estimate might suggest 11 tons
(would you use it and cross the bridge?)

• consequences imply here a nonsymmetric loss
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• overfitting: for example, θ̂ = argmax p(θ|D)

• consider a real-valued θ

• then the density p(θ̂|D) is not a probability

• but an integral over some neighbourhood of θ̂ is:

p(θ̂ − ε ≤ θ ≤ θ̂ + ε|D) =
∫ θ̂+ε

θ̂−ε
p(θ|D)dθ
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• it is possible that p(θ̂|D) is large, but the integral
above is small (even for somewhat large ε)

• visually, this happens when the posterior has a
“narrow peak” around θ̂

• this means that it is not very probable that θ is close
to θ̂ (exercise problem)
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• recall the linefitting problem:

y = µx + β + n, n ∼ N(0, σ2)

=
[

x 1
]

θ + n, θ =
[
µ β

]′

• N(y|a, b) means a Normal density for y with mean a
and variance b
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• denote

X =


x1 x2 . . . xn

1 1 . . . 1



′

Y = [y1, . . . , yn]′

• likelihood is p(Y|θ, X) = N(Y|Xθ, σ2 I)

• choose first a prior p(θ|X) ∝ c (constant prior)
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• use “completing the square”

• consider any expression

C exp(−1
2
(θ′Aθ + θ′b + b′θ + c))

• this is an unnormalized Normal distribution
N(θ|m, R): write the exponent as

−1
2
(θ −m)′R−1(θ −m)

• we see that R = A−1 and m = −Rb
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• compute the posterior:

p(θ|Y, X) ∝ p(Y|θ, X)p(θ|X)

= N(Y|Xθ, σ2 I)p(θ|X)

• use “completing the square” on the exponent (ignore
additive constants):

log p(θ|Y, X) ∝ −1
2

σ−2(Y− Xθ)′(Y− Xθ)

= −1
2

σ−2(Y′Y + θ′X′Xθ − θ′X′Y−Y′Xθ)

= −1
2
(θ −mθ)′R−1

θ (θ −mθ)

= −1
2

σ−2(θ − (X′X)−1X′Y)′X′X(θ − (X′X)−1X′Y)
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• therefore the posterior is

p(θ|Y, X) = N(θ|mθ, Rθ)

mθ = (X′X)−1X′Y

Rθ = σ2(X′X)−1

• the posterior mean is familiar from standard linear
regression as it is obtained using the pseudoinverse
(X′X)−1X′

• what if the prior is not constant?

• lets choose a Normal prior p(θ|X) = N(θ|a, B)
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• using the same technique as above (completing the
square) we obtain

p(θ|Y, X) = N(θ|mθ, Rθ)

mθ = (σ−2X′X + B−1)−1(σ−2X′Y + B−1a)

Rθ = (σ−2(X′X) + B−1)−1

• this is easy to compute for any a, B

• check what happens when B = σ2
p I and σ2

p gets very
large
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• why did we get the pseudoinverse result at first?

• when the prior is constant, the posterior is always
proportional to the likelihood:

p(θ|D) ∝ p(D|θ)p(θ) ∝ p(D|θ)

• for a Normal posterior, max p(θ|D) = E(θ|D) = mθ

• maximum likelihood would then also give mθ

• BI gives this result and the posterior variance directly
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Marginalization

• Bayesian Inference seems almost too trivial to be
useful and interesting

• but practical applications can be (and usually are)
quite complicated

• some interesting properties can be demonstrated
without going to problem-specific details

• marginalization: removing uninteresting but relevant
quantities
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• example: which taxi company C ∈ {1, 2} to take to
airport

• goal: minimize driving time t

• two routes r ∈ {1, 2}
• assume we know distribution of routes for each

company p(r|C) and distribution of driving times
p(t|r) on each route
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• we need to find p(t|C)

• why bother with route r if we just care about the
driving time?

p(t|C) = p(t, r = 1|C) + p(t, r = 2|C)

= p(t|r = 1)p(r = 1|C) + p(t|r = 2)p(r = 2|C)

• route must be included, since it links C and t

• but we don’t care about the route, so p(t|C) is what
we want to compute
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• removing uninteresting but relevant quantities is
called marginalization

• suppose θ = (x, y, z) and y is uninteresting

• then the goal is to compute p(x, z|D)

• if we get it as p(x, z|D) ∝ p(D|x, z)p(x, z), then y is
irrelevant

• heuristic, wrong solution is to compute p(x, y, z|D)
and estimate y, then use p(x, ŷ, z|D) as the
distribution over x, z
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• correct solution from rules of probability:

p(x, z|D) =
∫

p(x, y, z|D)dy

• called marginalization, because we are computing a
marginal distribution of the full posterior

• intuition: all possible values of y are considered, and
their effect is weighted by the full posterior
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• example: noise variance in regression

• often regression noise is modeled as N(0, σ2)

• variance σ2 assumed to be an unknown constant

• leads to the familiar least-squares solution

• Bayes requires considering all values of σ2

• we’ll see later that this gives a different result
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Model Averaging

• another way to think about marginalization,
especially when predicting observable values

• consider regression, where output y is predicted as a
function of an input x

• assume we are interested in predicting ỹ at an input x̃

• non-Bayesian solution: find an estimate θ̂ for the
regression parameters, then predict ỹ = f (x̃|θ̂)

• this can lead to overfitting as seen before
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• let’s predict ỹ using probabilities

• ỹ is unknown so we must have a distribution over it

• we know x̃ and D, so the distribution must be
conditional to these values

• we don’t know θ, so the distribution is not conditional
to θ
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• we want to compute the predictive distribution

p(ỹ|x̃, D)

• in general, a predictive distribution is any
distribution over an observable quantity (e.g. p(D))

• assume we obtained p(θ|D)

• θ must be included in the analysis, because it is
clearly relevant
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• use marginalization backwards:

p(ỹ|x̃, D) =
∫

p(ỹ, θ|x̃, D)dθ

• the integrand is the full posterior of ỹ, θ

• use the product rule to split the integrand:

p(ỹ|x̃, D) =
∫

p(ỹ|x̃, θ, D)p(θ|x̃, D)dθ

• remove unnecessary quantities (requires model
assumptions):

p(ỹ|x̃, D) =
∫

p(ỹ|x̃, θ)p(θ|D)dθ
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• p(ỹ|x̃, θ, D) = p(ỹ|x̃, θ) since θ determines
predictions

• p(θ|x̃, D) = p(θ|D) since pairs (x, y) determine θ

• p(ỹ|x̃, θ) is also a predictive distribution

• it cannot be used directly since θ is unknown
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• integral averages the predictive distributions using the
posterior over θ

• predictions made by more probable θ carry more
weight and vice versa

• follows from marginalization and the product rule
(no heuristics used)

• result is the only possible distribution of ỹ
quantifying the uncertainty in the prediction
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• possible misunderstanding of model averaging

• averaging is over probabilities, not predicted values!

• assume you write “0” badly, so it looks a bit like “9”

• handwritten digit recognition model might predict
“0” for θ1 and “9” for θ2 (p(θi|D) = 0.5, i = 1, 2)

• model averaging does not yield 4.5

• instead, model averaging puts some probability on
both predictions
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Overfitting

• caused by too many values of θ fitting to data

• for any such θ, p(θ|D) may be high

• if the predictions for such θ’s are different, this is
overfitting

• this does not always happen: the predictions may
also be similar
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• model averaging automatically reveals overfitting

• assume p(θ1|D) = p(θ2|D) = p(θ3|D) = 1/3

• if θi predicts ỹ = i with probability one, then

p(ỹ = i|x̃, D) = 1/3, i ∈ {1, 2, 3}

• but if each θi predicts ỹ = 1, then the predictive
distribution is p(ỹ = 1|x̃, D) = 1
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• different predictions by probable θ’s mean a high
predictive variance and thus overfitting

• similar predictions lead to low predictive variance

• thus, the predictive distribution reveals overfitting
and model-selection heuristics are not needed

• predictive variance can be different at different x̃: the
whole model does not necessarily overfit
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• example: linear regression using fixed, nonlinear
basis functions

• can be solved almost as easily as the linear example

• predictive distributions can also be computed easily

• demo: demo breg.R
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LECTURE 5: 14.2.2007

STATISTICAL LEARNING THEORY
SUPPORT VECTOR MACHINE
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Statistical Learning Theory

• motivation:

– there are some “theories of learning” that seem to
support learning from data without information

– contradiction with NFL thms: important to
examine what these theories actually claim

– we concentrate on Statistical Learning Theory,
perhaps the most well-known theory

– Bayes-approach is used to explain the apparent
conflict with No Free Lunch theorems
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• Statistical Learning Theory contains results on
generalizing a finite set of training data

• SLT ?=⇒ model-free learning is possible?

• not so: SLT does not make such a claim about
learning from a given set of data

• SLT is not incorrect, but irrelevant to the learning
problem defined earlier
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• most details are skipped, as SLT turns out not to
contradict NFL theorems

• the goal is to understand what the main result of SLT
actually claims

• after this, you should be better equipped to decide
whether studying such theories any further is worth
the effort

• we can’t skip SLT completely, since it is still being
used to justify various model-free learning methods
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• lets concentrate on binary outputs (binary regression
or two-class classification)

• SLT requires that you predefine a set of solutions H
which contains some (but not all) functions

h : X → {0, 1}

• then SLT measures the “smallness” of the set H using
Vapnik-Chervonenkis dimension
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• SLT seems to say that if h fits training data well and
is from a “small” set H, then h works well in general

• one wouldn’t expect to find a good solution from a
“small” H by chance

• note that this theory does not require you to know
anything about the relationship between inputs
x ∈ X and the corresponding outputs in {0, 1}
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Vapnik-Chervonenkis Dimension

• denote any training set of size n by

Zn = {(xi, yi)|xi ∈ X, yi ∈ {0, 1}, i = 1, . . . , n}

• for each classifier h ∈ H we obtain a dichotomy

(|y1 − h(x1)|, . . . , |yn − h(xn)|)

• |yk − h(xk)| = 1 if h predicts wrong, otherwise zero

• fix Zn, go through all h ∈ H and denote the number
of different dichotomies by N(Zn)
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• then maximize N(Zn) over all sets Zn with n fixed

• we have gotten rid of the specific training set Zn and
the specific classifier h

• the growth function

G(n) = log max N(Zn)

depends only on H, the domain X and the number of
points n
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• for any n ≥ 1, one of the following holds:

G(n) = n log 2

G(n) ≤ v(log(n/v) + 1)

• the integer v is the VC-dimension

• defined as the integer v satisfying

G(v) = v log 2

G(v + 1) < (v + 1) log 2
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• example: H contains all linear classifiers on a plane

• any three points x1, x2, x3 not on the same line can be
classfied in all possible ways by classifiers from H

• then G(3) = log 23

• any four points cannot be classified arbitrarily by
lines

• therefore G(4) < log 24 and the VC-dimension is
three
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• assume the “true” solution is defined by the
unknown distribution p(x, y)

• the data d = {(x1, y1), . . . , (xm, ym)} has been
generated from the distribution p(x, y)

• define

c = E(|y− h(x)|) (average error)

s =
1
m

m

∑
i=1
|yi − h(xi)| (training error)

• we want a small c, but can only compute s
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• the quantity c is important, since it measures how
well h performs in general, not just on the training set

• in our case of binary outputs, we have

c = E(|y− h(x)|)
=

∫ ∫
|y− h(x)|p(x, y)dxdy

= P(|y− h(x)| = 1)

• i.e. c is the error rate of the classifier h
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• we oviously cannot compute c without knowing
p(x, y)

• but we can compute s, the training error

• can we get information about c, given only training
data d, set H, and training error s?

• NFL theorems say this is impossible
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• main SLT result gives an upper bound for c as a
function of s, m (number of training points), and the
VC-dimension

• following inequality holds simultaneously for all
h ∈ H with probability 1− ν:

c ≤ s +
ε

2

[
1 +

√
1 +

4s
ε

]

ε = 4
G(2m)− log(ν/4)

m

• ε is a function of m, ν, and the VC-dimension
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• example:

s = 0, (no training error)

v = 1, (small VC-dimension)

m = 0.5 ∗ exp(10) ≈ 11000 training points

ν/4 = exp(−4) =⇒ ν ≈ 0.07

• then the bound is

c ≤ ε ≤ 8e−10(10 + 1 + 4) = 15 ∗ 8 ∗ e−10 ≈ 0.005

• so perfect training performance, small VC-dimension
and about eleven thousand samples seems to
guarantee small c with probability 1− ν = 0.93?

173



• is there a free lunch?

• it seems so: just select a set H with a small
VC-dimension, then choose h which minimizes s

• the bound is often small, so we have found a good
solution with no information?

• the set H can be freely chosen so this can’t be
explained by implicit information in selecting H
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• unfortunately, there is no free lunch

• Bayes-approach: check what is known and what is
uncertain

– known: data d, set H, training error s, number of
points m

– unknown: average error c

• we should compute p(c|d, H, s, m)
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• SLT uses only the likelihood p(s|c, m, . . . )

• i.e. distribution of s as a function of c

• not surprising that p(s|c, . . . ) is concentrated around
c

• for example, c = 0.1 means the classifier makes an
error once out of ten classifications on average

• not rocket science to expect that approximately one
out of ten training points are misclassified

• so p(s|c, . . . ) has a peak around c
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• add the extra term to obtain s + ε
2 [. . . ] > s

• now p(s + ε
2 [. . . ]|c, . . . ) is simply p(s|c, . . . ) shifted to

the right

• most of the probability mass is now on values larger
than c

• so we can say c ≤ s + ε
2 [. . . ] with high probability
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• this is only true when s is random and depends on a
constant c!

• so we can say “if c is small, then s is probably small
too”

• we cannot say “if s is small, then c is probably small”

• why? Conditional probabilities have to be reversed
using Bayes’ Theorem

• so we need to compute p(c|s, . . . ) which requires p(c)
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• example: four points, one classifier h ∈ H = {h}
• c is the number of errors divided by 4

• compute p(s|c) on two training points:

c 0 0.25 0.5 0.75 1

p(s = 0|c) 1 0.5 1/6 0 0

p(s = 0.5|c) 0 0.5 2/3 0.5 0

p(s = 1|c) 0 0 1/6 0.5 1

• then c ≤ s + 1/4 with probability at least 5/6
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• suppose s = 0 so the bound is c ≤ 1/4

• do we get c ≤ 1/4 with probability at least 5/6?

p(c = 0|s = 0) = 1/4

p(c = 1/4|s = 0) = 1/2

• since 3/4 < 5/6, this demonstrates that we can’t
reverse probabilities without consequences
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• the problem with SLT is similar to the fingerprint
exercise problem

• p(match|innocent) was small, but p(innocent|match)
was large

• reason was a very nonuniform prior of innocence

• in SLT, p(c) is implicitly uniform, but it should not be
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• uniform p(c) implies that you have useful
information about the error rate of h (exercise)

• if you don’t, then a reasonable prior is a Binomial
distribution for nc (exercise)

• this distribution is very nonuniform when n is even
moderately large
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• the flaw in SLT is demonstrated in detail in exercise
problems

• example: binary classifier H = {h}
• s = 0.1, m = 100, and there are 1000 points to be

classified

• small s and small VC-dimension v should imply that
c is small?

• the posterior p(c|d, s, m, v, h) looks like this (demo
fixed.R):
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• SLT bound gives c ≤ 0.33 with probability
1− ν ≈ 0.93

• this clearly disagrees with the posterior

• the posterior would be concentrated exactly around
c = 0.5, but c is measured partly on the training set

• we already know that for 100 training points the error
is small (s = 0.1)
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Support Vector Machine

• a two-class classifier often justified by SLT

• but we saw SLT does not show that learning without
information is possible

• SVM has no properties that would give it a good
off-training set error rate in general

• however, it has a number of practical advantages
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• input vectors are mapped into a high-dimensional
feature space using a fixed nonlinear mapping

• the fixed mapping is selected so that inner products
in the feature space are easy to compute

• data is classified linearly in the feature space

• this corresponds to a nonlinear classifier in the data
space
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• SVM has some practical advantages:

– flexible model: easy to implement complicated
nonlinear classifiers

– the classifier is typically determined by a small
part of training data

– computational benefits: quadratic programming
solves the classifier, inner products are computed
easily
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Optimal Linear Classifier

• data: vectors xi ∈ Rd, class labels yi ∈ {−1, 1}
• linearly separable training data (x1, y1), . . . , (xm, ym)

• first component of x is always one: then a linear
classifier is a hyperplane defined by w′x = 0

• the normal vector w defines the classifier
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• x is classified by the sign of the inner product w′x

• OLC is defined as the linear classifier that

1. makes no errors on the training set:

yiw′xi ≥ 1, i = 1, . . . , m

2. is as far as possible from the closest training point:

w∗ = argmaxw min
i=1,...,m

yiw′xi

‖w‖
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• the expression yiw′xi
‖w‖ is the projection of xi onto w,

scaled by ‖w‖
• this gives the distance of xi to the hyperplane

• the above conditions result in the optimization
problem

1
2
‖w‖2

yiw′xi ≥ 1, i = 1, . . . , m
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• the solution is defined by the closest training point to
the hyperplane

• there can be more than one: these points are called
support vectors

• later we will see that the solution is in a sense
defined by the support vectors
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• OLC’s “optimality”: start with
S = {w | yi(w′xi) ≥ 1, i = 1, . . . , m}

• VC-dimension of a subset
S(A) = {w ∈ S | ‖w‖ ≤ A} gets smaller when A gets
smaller

• SLT bound c ≤ s + . . . is minimized when
VC-dimension is minimized (due to s = 0)

• smallest S(A) 6= ∅ is S(A = minw∈S ‖w‖), so SLT
suggests to minimize ‖w‖ in S
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• this derivation is useless: pick any w1 ∈ S

• S(A = minw∈S ‖w‖) has at least the same
VC-dimension as {w1}

• so w1 minimizes the bound as well as OLC

• all classifiers in S can’t be “optimal” at the same time
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• optimality of OLC fails in two ways:

– having a small bound for c says nothing about the
performance of the classifier (SLT’s flaw)

– even if it does, any classifier with s = 0 achieves the
same bound

• OLC is optimal only in the sense it was defined
before: it maximizes the distance to the closest
training point
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• regardless of optimality issues, we minimize

J =
1
2
‖w‖2

with constraints

yi(w′xi) ≥ 1, i = 1, . . . , n

• constraints ensure s = 0 and minimizing J
maximizes the distance to support vectors

196



• can be solved by Quadratic Programming, giving the
solution in terms of Lagrange coefficients u∗i :

w = ∑
i

u∗i yixi

• most u∗i = 0: the nonzero ones correspond to support
vectors xi

• new vectors can be classified by computing the sign
of

w′x = ∑
i

u∗i yix′ix
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• to obtain SVM from this linear classifier, the vectors
xi are mapped nonlinearly to zi = g(xi)

• demo: Kernels/polykern.R

• inner products of zi and zj need to be computed:

H(xi, xj) = z′izj =
D

∑
k=1

gk(xi)gk(xj)

• using this directly is difficult if D is large (it often is)
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• for some mappings z = g(x), the kernel H(xi, xj) is a
simple function of xi, xj:

– polynomials of degree q: H = (1 + x′ixj)q

– localized basis functions:
H(x, xi) = exp(−‖x− xi‖2σ−2)

– Fourier-series: H = sin(q+0.5)(xi−xj)
sin(xi−xj)/2

• recall that we assumed that one component is always
constant: this holds e.g. for the polynomial kernel
since one basis function of a polynomial is a constant
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• now SVM can be defined as follows:

1 choose a feature space for which there is an inner
product kernel H(·, ·)

2 compute an inner product matrix with components
Hij = H(xi, xj)

3 solve the quadratic optimization problem and obtain
u∗i ’s

4 classify new vectors x by taking the sign of
∑i u∗i yiH(xi, x)
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• benefits of SVM:

– the dimension of z is irrelevant (computationally)
when solving the optimization problem

– the resulting classifier is nonlinear in x-space

– new samples are easy to classify linearly using the
kernel
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• disadvantages:

– nonlinear mapping g is chosen arbitrarily, but the
solution depends on it

– OLC is not optimal in a general sense: it is simply a
linear classifier that maximizes the distance to closest
training point

– the maximum distance holds in the z-space, but in the
x-space distances are different
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• SVM demos: Kernels/linear.R (demos by Ralf
Herbrich, somewhat modified)

• exmp.svm1: linear kernel

• exmp.svm2: polynomial kernel, q = 7

• exmp.svm3: RBF kernel
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LECTURE 6: 21.2.2007

BAYESIAN MODELING: ONE-VARIABLE
MODELS, PRIORS
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One-Variable Normal Models

• we will go through a few examples using Normal
distribution illustrating certain aspects of Bayesian
Inference

• benefits: closed-form solutions, easy to interpret
what happens, can be used as building blocks in
more complicated models

• drawbacks: Bayesian inference in practice almost
always requires more complicated techniques
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• example: Normally distributed data with known
variance

• a Normal distribution p(y|θ, σ2) = N(y|θ, σ2) is
defined by its mean θ and variance σ2

• we could interpret θ as the most probable value and
variance as a measure of how certain we are about θ
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• for convenience, we will use precision λ = σ−2

instead of variance

• large precision =⇒ small variance, θ known quite
precisely

• small precision =⇒ large variance, θ not known
precisely

• lets examine what happens when we observe
Normally distributed data
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• likelihood is p(y|θ, λ) = N(y|θ, λ−1) where

N(y|θ, λ−1) = λ1/2(2π)−1/2 exp(−λ

2
(y− θ)2)

• assume that λ is known but θ is unknown and we
observe one value y
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• lets choose the prior as p(θ) = N(θ|θ0, λ−1
0 )

• Bayes’ Theorem gives the posterior as (exercise):

p(θ|y) = N(θ | λ0θ0 + λy
λ0 + λ

, (λ0 + λ)−1)

• note that both the prior and the posterior are Normal
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• lets examine how the mean and precision change as
we go from Normal prior to Normal posterior

• precision changes as

λ0 → λ0 + λ

• λ is the “data precision”: observing one y increases
the precision by λ

• λ0, the prior precision, defines how accurately we
knew θ before seeing any data
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• mean is changed towards y as

θ0 → θ0 + (y− θ0)
λ

λ + λ0

• the posterior mean is a weighted average of θ0 and y

• the weighting depends on the precisions
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• the “step size”
λ

λ + λ0

defines the weights

• if prior is more precise (λ ¿ λ0), the step size is close
to zero and the posterior mean is close to prior mean

• if prior is not precise (λ À λ0), the step size is close
to one and the posterior mean is closer to y
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• above discussion illustrates what happens in general

• compromise between data and the prior,
automatically weighted by prior and likelihood
precisions

• very precise prior makes data useless: we already
know θ precisely

• very precise likelihood makes prior useless: data tells
the value of θ very precisely
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• what is the predictive distribution of a new value ỹ?

• use “reverse marginalization” to compute

p(ỹ|y) =
∫

p(ỹ, θ|y)dθ

=
∫

p(ỹ|y, θ)p(θ|y)dθ

• integrand contains p(ỹ|y, θ) = N(ỹ|θ, λ−1)
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• the second term is the Normal posterior p(θ|y) which
was just solved

• integrand is a Normal distribution of θ and ỹ

• this can be seen by multiplying the two Normal
distributions and writing the product in the form of
N((θ, ỹ)′|A, B)
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• integration over θ gives a marginal distribution of the
joint Normal distribution

• therefore p(ỹ|y) is also a Normal distribution

• its mean and variance are (see model averaging
exercise problem)

E(ỹ|y) = E(θ|y)

var(ỹ|y) = σ2 + var(θ|y)
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• the predictive mean is identical to the posterior mean

• this corresponds to intuition: posterior mean is the
most probable θ, and most probable ỹ generated is
the mean of the Normal distribution

• but predictive variance is not the likelihood variance

• var(ỹ|y) is larger than σ2, since there is also
uncertainty about θ
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• the same calculations may be repeated for n
independent observations y1, . . . , yn which can also
be vectors (exercise)

• posterior precision will be a sum of prior precision
and one data precision for each observation,
i.e. λ0 + nλ

• the more data, the higher the precision of the
posterior

• demo bgauss.R illustrates the above inference

218



• lets use previous results to construct a simple
Bayesian classifier

• warning: this example is simplified too much to be
realistic

• the purpose is to build the classifier using the
Normal model as a building block
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• data xi belongs to one of two classes (0 and 1)

• data in each class is Normally distributed:

xi ∼ N(µj, λ−1
j ) if xi is in class j = 0, 1

• knowns: precisions λ0, λ1, training data
(xi, yi), i = 1, . . . , n

• unknowns: µ0, µ1 and class label ỹ ∈ {0, 1}
corresponding to a new x̃

• prior: p(µ0, µ1) = N(µ0|0, 1)N(µ1|1, 1)
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• unrealistic assumption: assume that each class
generates equal amount of data

• this means that any p(y = 0| . . . ) not conditional to x is
0.5

• in a realistic classifier, this probability would be an
unknown parameter

221



• the likelihood is

p(D|θ) = ∏
i

p((xi, yi)|µ0, µ1) =

= ∏
i

p(xi|yi, µ0, µ1)p(yi|µ0, µ1)

• according to our assumptions

p(xi|yi = 0, µ0, µ1) = N(xi|µ0, λ−1
0 )

p(xi|yi = 1, µ0, µ1) = N(xi|µ1, λ−1
1 )

p(yi|µ0, µ1) = 0.5

222



• then the posterior can be written as

p(θ|D) ∝

[
∏

i
p((xi, yi)|µ0, µ1)

]
p(µ0, µ1) =

∝

[
∏

i
N(xi|µyi , λ−1

yi
)

]
N(µ0|0, 1)N(µ1|1, 1)

• the posterior splits into factors p(µ0|D)p(µ1|D)

• both can be computed using parameters and data
corresponding to one class only

• define nj as number of vectors in class j, and sj as
sum of vectors in class j
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• now each posterior factor is simply the result of
observing Normal data and having a Normal prior

• using the formulas derived earlier, we obtain

p(µ0|D) = N(µ0| λ0s0

n0λ0 + 1
, (1 + n0λ0)−1) = N(µ0|m0, v0)

p(µ1|D) = N(µ1| λ1s1 + 1
n1λ1 + 1

, (1 + n1λ1)−1) = N(µ1|m1, v1)
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• to use the classifier, we need to compute the
predictive distribution of ỹ conditional to the vector
x̃ to be classified:

p(ỹ|x̃, D)

• since either ỹ = 0 or ỹ = 1, it is enough to compute

p(ỹ = 1|x̃, D) =
∫

p(ỹ = 1|x̃, µ1)p(µ1|D)dµ1

∝
∫

p(x̃|ỹ = 1, µ1)p(ỹ = 1|µ1)N(µ1|m1, v1)dµ1

∝
∫

N(x̃|µ1, λ−1
1 )N(µ1|m1, v1)dµ1
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• as a function of x̃, this is a Normal distribution
N(x̃|m1, v1 + λ−1

1 )

• therefore we get

p(ỹ = 1|x̃, D) ∝ N(x̃|m1, v1 + λ−1
1 )

p(ỹ = 0|x̃, D) ∝ N(x̃|m0, v0 + λ−1
0 )

• the classifier can be implemented by choosing the
class j which maximizes p(ỹ = j|x̃, D)
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• a curiosity: the classifier works even if your training
data comes from one class only!

• if n0 = 0, then m0 = 0, v0 = 1, and

p(ỹ = 0|x̃, D) ∝ N(x̃|0, λ−1
0 + 1)

• all the above can be easily extended to multivariate
data, using the corresponding multivariate formulas
given in the exercises

• demo: bclass2.R
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Priors

• Bayes requires specifying the likelihood p(D|θ) and
the prior p(θ)

• the likelihood seems easier, since it tells how data is
generated as a function of θ

• prior can be more difficult:

– often models contain parameters that have no
easily understood meaning

– for arbitrary priors and likelihoods, it may be
impossible to compute the posterior in closed
form
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Conjugate Priors

• closed-form posteriors can be obtained by using
conjugate priors

• when just the mean is unknown, Normal prior and
likelihood lead to a Normal posterior

• assume that likelihood belongs to class L of
distributions and the prior to a class P

• if it follows that the posterior belongs to class P , then
we say that the classes L and P are conjugate
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• if in the above definition L = P , then the prior is
naturally conjugate to the likelihood

• e.g. Normal and binomial distributions are naturally
conjugate

• conjugacy is practical since one can simply compute
the posterior parameters (e.g. mean and variance)

• a realistic model usually results in priors that are not
conjugate
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• conjugacy often reveals the effect of the prior

• the prior can be interpreted as representing
previously observed data

• for example in the Normal example, the posterior
mean is symmetric with respect to the prior and the
likelihood:

E(θ|y) =
λ0θ0 + λy

λ0 + λ

• prior contains the same information as having
observed θ0 with precision λ0
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Noninformative Priors

• Bayes is often criticized for its use of prior
distribution

• by a suitable prior, the end result can be influenced

• but this is true of the whole model as well: the result
does (and should) depend on the choice of model

• a better argument is that it is difficult to specify prior
information for more or less abstract parameters
when one has no idea whatsoever about the value
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• there has been considerable interest to solve the
question of determining noninformative priors

• it is difficult to even define what a noninformative
prior is

• heuristic ideas don’t work: for example, shouldn’t all
values be equally probable if we have no prior
information?
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• suppose the variance σ2 is the unknown quantity of
interest

• we might as well use the standard deviation σ

• use a constant prior, so any unit interval has the same
probability

• since σ2 ∈ [0, 1] and σ ∈ [0, 1] are the same events,
their probability must be the same q
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• constant prior says that σ2 ∈ [1, 2] and σ ∈ [1, 2] have
prior probability q as well

• but these events are not the same: σ ∈ [1, 2] is
equivalent to σ2 ∈ [1, 4]

• the latter event has prior probability 3q 6= q

• results should not depend on whether you want to
use σ2 or σ
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• the Fisher information for a scalar θ is

I(θ) = E
[

∂

∂θ
log p(y|θ)

]2

where the expectation is computed over p(y|θ)

• the Jeffreys’ prior p(θ) ∝
√

I(θ) is invariant to
transformations of parameters

• for example, the problem of σ vs σ2 is solved by it
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• there are many ways of defining noninformative
priors, most of which disagree with Jeffreys’ prior

• for scalar location and scale parameters, it seems that
most ways lead to the same result

• the Jeffreys’ prior for a location parameter is
p(µ) ∝ constant and for a scale parameter it is
p(θ) ∝ 1/θ (exercise problem)
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• example: table entry problem

• it has been found experimentally that the
distribution of the first significant digit in tables of
scale data is well described by

log(1 + i−1)/ log 10, i = 1, . . . , 9

• one might expect a uniform distribution instead

• scale data: populations of cities, number of cars
passing a bridge in a day etc..
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• Jeffreys’ prior for scale parameter is p(σ) ∝ σ−1

• consider the interval (1, 10) where Jeffreys’ prior is

p(σ) = σ−1/ log 10

• the first digit of σ is i if σ ∈ [i, i + 1)
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• the probability of this is

p(σ ∈ [i, i + 1)) =
∫ i+1

i
σ−1/ log 10dσ

= /i+1
i log σ/ log 10

= (log i + 1− log i)/ log 10

= log(1 + i−1)/ log 10

• so Jeffreys’ prior restricted to the interval [1, 10)
predicts the experimental result
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Improper Priors

• sometimes one may encounter situations where the
constant prior p(θ) = c seems the correct choice

• this cannot be normalized to a probability
distribution if θ varies over an infinite interval
(e.g. θ ∈ R)

• however, such priors are sometimes used: they are
called improper priors
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• in most cases they lead to proper posteriors: when
they do not, the results may be wrong

• it may be better to choose a flat proper prior, and
allow the likelihood to dominate the inference as it
would for a constant prior

• example: a Normal prior with a very large variance
may be close enough to a constant prior
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LECTURE 7: 28.2.2007

BAYESIAN MODELING: MULTIVARIATE AND
HIERARCHICAL MODELS
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• no teaching next week due to midterm exam week

• next lecture is on March 14th and next exercises on
March 16th
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Multivariate Models

• many uncertain quantities in a vector-valued θ

• in principle, Bayesian inference proceeds as before

• specify the prior p(θ) and the likelihood p(D|θ), then
compute the posterior p(θ|D)
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• however, some practical difficulties arise

• assume θ = (θ1, . . . , θn)′ contains some components
that are not interesting

• these are called nuisance parameters
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• as before, we can obtain the full posterior p(θ|y)

• at least we can write it as a function of θ using Bayes’
theorem p(θ|y) ∝ p(y|θ)p(θ)

• the posterior is a multivariate function of θ

• unless conjugate priors are used, it is not generally a
simple standard distribution
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• in practice, various computations on the posterior are
required

• for example, we might be interested in θ1 only

• marginalize out variables θ2, . . . , θn

• done by integrating the full posterior over these
variables
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• the full posterior may be, and often is, impossible to
integrate in closed-form

• this integration must be done in one way or another

• for example, the probability p(0 ≤ θ1 ≤ 1|D) cannot
be computed from the full posterior without
integration
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• example: Normally distributed data, mean θ and
variance σ2 unknown

• standard estimates for θ consider σ2 as a constant

• corresponds to a known σ2 from Bayes point of view

• unrealistic to assume that σ2 is known
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• suppose only the mean θ is interesting

• this makes σ2 a nuisance parameter

• must be in the model, since it can affect results

• we don’t want it in the posterior
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• data: y1, . . . , yn : yi ∼ N(θ, σ2)

• Jeffreys’ prior: p(θ, σ2) ∝ σ−2

• the marginalized posterior p(θ|y1, . . . , yn) can be
solved analytically

• the result is not a Normal distribution, unlike for
constant σ2
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• the full posterior is easy to write as

p(θ, σ2|y) ∝ σ−2 ∏
i

N(yi|θ, σ2)

• marginalizing over σ2 yields a Student-t distribution

p(θ|y) = tn−1(µy, s2/n)

where

µy =
1
n ∑

i
yi (sample mean)

s2 =
1

n− 1 ∑
i
(yi − µy)2 (sample variance)
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• Student-t distribution has “heavy tails”, meaning
that p(θ|y) → 0 slowly when |θ − µy| increases

• very large (or small) values of θ are more probable
than for a Normal distribution

• special case of one observation is calculated in the
exercises

• general result is in Gelman’s book, pp. 66-69

• demo: student.R
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• example: assume that y1, . . . , yn are Normally
distributed: yi ∼ N(θ, σ2

i )

• note that each observation yi has its own variance σ2
i

• number of parameters is n + 1 and the number of
observations is n

• it seems that there is too much freedom in the model
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• posterior is obtained in closed form using a Gamma
distribution for p(σ2

i ) (demo exercise)

• the demo below compares this to estimating θ using
a Normal model with constant σ2

• Bayes result is less sensitive to an outlier

• demo: robust.R
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Hierarchical Models

• a multivariate model with a special structure

• often prior information is easiest to represent using a
hierarchical model

• the structure of the problem may also suggest a
hierarchical model
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• some benefits of HM’s:

– posterior can be written in a form suitable for
simulation (discussed in a later lecture)

– models can be constructed using simple
distributions as building blocks
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• example: coin toss

• toss n = 20 times and observe y = 12 heads

• probability of heads is θ

• you suspect the coin may be biased: denote a biased
coin by b = 1 and unbiased by b = 0

• use a prior p(b = 0) = p(b = 1) = 0.5
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• assume that biasedness defines θ as

p(θ = 0.5|b = 0) = 1

p(θ = 0.7|b = 1) = 0.5

p(θ = 0.6|b = 1) = 0.5

• now the model is ready: the unknowns are b, θ and
we know y = 12
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• find the probability p(b = 1|y)

• the marginal posterior is p(b|y) =
∫

p(b, θ|y)dθ

• compute the full posterior:

p(b, θ|y) ∝ p(y|b, θ)p(b, θ)

= p(y|θ)p(θ|b)p(b)

= Bin(y|n, θ)p(θ|b)p(b)
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• the equation

p(θ, b|y) ∝ p(y|θ)p(θ|b)p(b)

is generally true for a hierarchical model

• i.e. data y depends on θ, θ depends on an unknown b,
and finally there is a prior for b

• the parameter b is called a hyperparameter, since it
only affects another parameter directly but not data

• this is what makes the model hierarchical
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• since p(θ|b) is nonzero only for θ ∈ {0.5, 0.6, 0.7},
compute the posterior at these values:

p(b = 1, θ = 0.6|y) ∝ Bin(y|n, θ = 0.6)p(θ = 0.6|b = 1) ≈ 0.045

p(b = 1, θ = 0.7|y) ∝ Bin(y|n, θ = 0.7)p(θ = 0.7|b = 1) ≈ 0.029

p(b = 0, θ = 0.5|y) ∝ Bin(y|n, θ = 0.5)p(θ = 0.5|b = 0) ≈ 0.060
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• full posterior says that values b = 0, θ = 0.5 are most
probable, implying that the coin is unbiased

• the marginal posterior is obtained from the full
posterior values:

p(b = 1|y) ≈ 0.074

p(b = 0|y) ≈ 0.060

• this is maximized by b = 1, which says that the coin
is probably biased
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• few important things to notice:

– the data y does not depend on b, when θ is known

– this means that p(y|θ, b) = p(y|θ)

– the MAP value of the full posterior conflicts with the
MAP of the marginal posterior

– it is possible to compute p(θ) =
∫

p(θ|b)p(b)db, but in
general this is more complicated than using a HM
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• the full posterior of a HM is often impossible to
marginalize by integration

• HM’s can be constructed so that they can be
approximated by simulation (discussed later)

• one such method requires that we can draw random
values from the conditional posteriors p(θ|b, y) and
p(b|θ, y)
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• these can be computed as

p(b|θ, y) =
p(y|θ, b)p(b|θ)

p(y|θ)
=

p(y|θ)p(b|θ)
p(y|θ)

∝ p(θ|b)p(b)

p(θ|b, y) =
p(y|θ, b)p(θ|b)

p(y|b) ∝ p(y|θ, b)p(θ|b)

• p(b|θ, y) can be solved if p(b) is conjugate to p(θ|b)
• p(θ|b, y) is the non-HM posterior (just consider b as

known): conjugate prior gives also this in closed
form
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Data with a Hierarchical Structure

• example: average length of produced parts

• two sets of measurements (days 1 and 2)

• assume that length varies more between days than
within a day

• interesting quantity is the mean length (assume
constant variance)
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• two easy solutions:

– consider all data as identically distributed

– consider the data from each day separately

• first case: mean length is the same on both days

• second case: mean length on day 1 has nothing to do
with mean length on day 2

• both assumptions unrealistic
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• the average length is assumed to change between
days

• but we also assume it does not change very much

• this suggests a hierarchical model

• data distribution: day one as N(θ1, σ2) and day two
as N(θ2, σ2)
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• lets use a prior p(θi) = N(θi|µ, τ2)

• the hyperparameters µ, τ are unknown

• note that fixed values µ, τ2 prevent any dependency
between the data on different days

• the hierarchical model gives different results than
either of the easy solutions
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• lets specify the HM

• day 1 data x1, . . . , xm are from N(θ1, σ2) and day 2
data y1, . . . , yn are from N(θ2, σ2)

• prior: p(θi) = N(θi|µ, τ2)

• prior for hyperparameters: p(µ, τ2) ∝ τ−1
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• with known σ2, the model can be solved (Gelman’s
book, section 5.4)

• with unknown σ2 and a prior p(σ2) ∝ σ−2, a
closed-form solution is impossible

• but we can compute the conditional posteriors for
simulation (exercise problem)
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• necessary conditional posteriors are

p(θi|µ, σ, τ, D)

p(µ|θ1, θ2, σ, τ, D)

p(σ2|θ1, θ2, µ, τ, D)

p(τ2|θ1, θ2, µ, σ, D)

• with some thought some simplifications can be
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made:

p(µ|θ1, θ2, σ, τ, D) = p(µ|θ1, θ2, τ)

p(σ2|θ1, θ2, µ, τ, D) = p(σ2|θ1, θ2, D)

p(τ2|θ1, θ2, µ, σ, D) = p(τ2|θ1, θ2, µ)

• it is relatively straightforward to find these
distributions (exercise problem)

• one can use repeatedly the Bayes’ Theorem and the
product rule and eliminate unneeded parameters
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Model Uncertainty

• model selection means selecting a model out of several
candidates using data

• this is heuristic if done using only the information
contained in the model(s) and data

• proper way is to use one model p(θ, D) as discussed
before

• so there is nothing to select in theory
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• what if one has more than one possible model?

• example: linear vs. nonlinear model

• if data is known to be linear, then the correct model is
obviously linear

• but one might be uncertain of the linearity

• linear model underfits nonlinear data, so perhaps it
is better to use a nonlinear model?

277



• major problem with “flat” nonlinear models: they
overfit linear data

• if the model corresponds to information about the problem,
then this overfitting is not a problem

• a nonlinear model does not generally put a high
probability on the possibility that data is linear
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• we can construct a hierarchical model which includes
both a linear and a nonlinear model

• a hierarchical nonlinear regression model:

p(Y|θ, σ2) = N(Y|Xθ, σ2K)

p(θ|σ2, τ2, W, θ0) = N(θ|θ0, σ2τ2W)

p(θ0) = N(θ0|µ, B)

• hyperparameters τ2, σ2 have inverse Gamma prior
distributions, and the covariance matrix W has an
inverse Wishart prior distribution
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• the model is constructed using conjugate priors, so
that conditional posteriors are obtained in closed
form (see Gelman et al. for more details on the
conjugate priors)

• the nonlinearity of the model comes from the
covariance matrix K

• the elements of K are inner products of feature
vectors (as in SVM)

• these methods will be discussed in more detail in a
later lecture
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• the hyperparameters increase the uncertainty in the
model

• for example, in a flat model the prior mean of p(θ)
would be fixed e.g. to zero

• the hierarchical prior does not explicitly fix p(θ) as a
zero-mean Normal distribution

• generally a hierarchical prior amounts to a more
noninformative prior
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• the above nonlinear model includes a linear model as
a special case

• if the covariance matrix K is selected to be the
identity matrix, then a hierarchical linear regression
model is obtained

• these models may be combined simply by adding a
binary indicator, which selects one of the models

• the indicator is a hyperparameter, and thus requires a
hyperprior
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• a predictive distribution can be computed as before:
all parameters are integrated out, also the indicator
variable

• this means that predictions will be made using both
models, but the weighting is affected by data

• demo: gpmixture.R
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• summary of HM’s:

– learning problem may have a hierarchical
structure

– allow models with no closed-form posterior to be
constructed with closed-form conditional
posteriors

– suitable for approximation by certain simulation
methods

– combining models, adding uncertainty lead to
HM’s
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LECTURE 8: 14.3.2007

POSTERIOR APPROXIMATION BY SIMULATION
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Posterior Approximation: Simulation
Methods

• the goal of Bayesian inference is to compute the
posterior p(θ|y) in a usable form

• except in simple examples and conjugate models,
posterior is not a standard distribution

• in general one can obtain the unnormalized posterior
as

p(θ|y) ∝ p(y|θ)p(θ)
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• the normalizing factor is

p(y) =
∫

p(θ, y)dθ =
∫

p(y|θ)p(θ)dθ

• in almost any realistic, non-conjugate model, this
integral is not obtained in closed-form
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• most uses of the posterior require integrating over it

• computing the posterior mode does not, but then the
mode does not contain any probability information

• integration is unavoidable if probabilities are to be
computed

• in general, expectations of the form E(h(θ)|y) are
needed
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• expectation is an integral over the posterior:

E(h(θ)|y) =
∫

h(θ)p(θ|y)dθ

• examples of functions h(·):

– posterior mean: h(θ) = θ

– posterior variance: h(θ) = (θ − µ)2, µ = E(θ|y)

– probability of θ ∈ A: h(θ) = 1 when θ ∈ A, zero
otherwise
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• various approximation methods can be used to
compute the integrals

• next week, parameteric approximations are
discussed

• the true posterior is approximated as some tractable
parametric distribution, for example Normal
distribution

• today, more general approximation is discussed
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• simulation: for our purposes, drawing samples from
the posterior distribution

• sort of “reverse estimation”: in estimation, a
distribution is unknown but data generated from it
are known

• in simulation, we know the posterior as a function of
θ and then generate data from it

• the simulated data carry information about the
posterior
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• as in estimation, the data can be used to approximate
expectations over the posterior

• for example, drawing m samples from a Normal
distribution N(µ, σ2) can be used to estimate the
normal mean and variance using the familiar
estimators

• but we can use the samples to estimate any
expectation E(h(θ)|y)
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• assume that we have drawn θ1, . . . , θm from the
posterior p(θ|y)

• the expectation E(h(θ)|y) can be approximated by a a
Monte Carlo integral

∫
h(θ)p(θ|y)dθ ≈ 1

m

m

∑
i=1

h(θi)

• if the samples are independent, it is easy to see that

1. the mean of the approximation is E(h(θ)|y)

2. the variance is proportional to 1/m
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• there are several ways of obtaining the samples

• direct simulation is possible for many standard
distributions

• most mathematical software (R, MATLAB etc..) have
functions for drawing samples

• direct simulation is mainly based on uniformly
distributed pseudorandom numbers and their
transformations
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• since direct simulation of a discrete distribution is
easy, why not use a piecewise constant
approximation to the posterior?

• this means dividing the θ space into disjoint subsets
and setting p(θ|y) to a constant value in each subset

• normalization would be obtained trivially, since the
difficult integral would simply be a finite sum

• not generally a good solution: posterior mass can be
very concentrated in high-dimensional problems, so
this approach is very unreliable

• demo: sampling.R
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• fortunately, there are ways of obtaining simulated
samples from an unnormalized distribution

• the methods discussed below have very appealing
properties in theory

• but some important weaknesses limit their use in
practice

• some basic methods are introduced, and their
properties explored

• notation warning: p(θ|y) is generally assumed to be
unnormalized in the rest of this lecture.
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Importance Sampling

• importance sampling approximates integrals directly

• assume we want to compute (using an unnormalized
posterior)

E(h(θ)|y) =
∫

h(θ)p(θ|y)dθ/
∫

p(θ|y)dθ

• in importance sampling, a distribution g(θ) is chosen
so that it is easy to draw values from
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• insert 1 = g(θ)/g(θ) to obtain

E(h(θ)|y) =

∫
h(θ) p(θ|y)

g(θ) g(θ)dθ
∫ p(θ|y)

g(θ) g(θ)dθ

• this is equal to

Eg

(
h(θ) p(θ|y)

g(θ)

)

Eg

(
p(θ|y)
g(θ)

)

where Eg is an expectation over g(θ)
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• simulate g(θ) to obtain samples θi, i = 1, . . . , m and
compute the importance ratios

wi =
p(θi|y)
g(θi)

, i = 1, . . . , m

• both p and g can be unnormalized

• then approximate the expectations to obtain

E(h(θ)|y) ≈ ∑i wih(θi)
∑i wi
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• properties:

– works if g(θ) is somewhat proportional to
h(θ)p(θ|y): if g ¿ hp, then very few simulated
values are obtained where they are needed

– both p(θ|y) and g(θ) can be unnormalized

– can use the same simulated set for new p(θ|y)
and/or new h(θ)

– does not give simulated values from the posterior!
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Rejection Sampling

• generates independent samples drawn from the
posterior

• again choose a distribution g(θ) which is easy to
sample from (can be unnormalized)

• the importance ratio must be bounded:

p(θ|y)
g(θ)

≤ M for all θ

301



• rejection sampling proceeds as follows:

1. draw a value θ∗ from g(θ), and u from a uniform
distribution on [0, 1]

2. accept the sample θi = θ∗ if u ≤ p(θ∗|y)/Mg(θ∗),
otherwise go back to step 1

• repeating the two steps, one obtains a set of samples
θi which are distributed as p(θ|y)

• straightforward computation shows this
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p(θi ≤ x) = p(θ∗ ≤ x|u ≤ p(θ∗|y)
Mg(θ∗)

)

=
p(θ∗ ≤ x, u ≤ p(θ∗|y)

Mg(θ∗) )

p(u ≤ p(θ∗|y)
Mg(θ∗) )

=

∫ x
−∞

∫ p(θ|y)/Mg(θ)
0 dug(θ)dθ

∫ ∞
−∞

∫ p(θ|y)/Mg(θ)
0 dug(θ)dθ

=
1/M

∫ x
−∞ p(θ|y)dθ

1/M
∫ ∞
−∞ p(θ|y)dθ

=
∫ x

−∞
p(θ|y)dθ = p(θ ≤ x|y)

303



• as in importance sampling, the distribution g(θ) has
practical implications

• if the proposal distribution g(θ) is small where the
real distribution is large, the constant M is large

• then a very large proportion of simulated points will
be rejected (exercise)
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Markov Chain Monte Carlo

• direct and rejection sampling define a random
process

θ0, θ1, θ2, . . . (1)

which is an i.i.d. sequence of p(θ|y)-distributed
variables

• often it is not practical to use the above methods to
obtain i.i.d. samples from the posterior

• more practical simulation methods are based on
Markov Chains, which result in nonindependent
samples
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• a random process θ0, θ1, . . . is a Markov Process, if it
has the Markov property:

p(θi+1|θi, θi−1, . . . ) = p(θi+1|θi), ∀i ≥ 0

• this means that the current state θi completely defines
the conditional distribution of future states

• i.e. the process has a very short memory
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• to define a Markov Chain, we need a transition
distribution

T(θi+1|θi) = p(θi+1|θi)

• given an initial distribution p(θ0), every θi has an
unconditional distribution p(θi)

• the Markov Chain has a stationary distribution if
p(θi+1) = p(θi) for all i ≥ 0
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• Markov Chain Monte Carlo (MCMC) means
simulating a Markov Chain with a desired stationary
distribution

• in our case, we usually want the stationary
distribution to be the posterior

• direct and rejection sampling are trivially MCMC
(with no memory)

• in general, MCMC results in a sequence of simulated
values which are not independent
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• some needed properties (see refs on webpage):

– stationary distribution p(θ|y): correct distribution
achieved by construction, stationarity follows
from properties below

– π−irreducibility: for any set A with
p(θ ∈ A|y) > 0 and any starting value θ0, there is
an integer n = n(θ0, A) so that P(θn ∈ A) > 0

– Harris-recurrence: given a π−irreducible chain,
for any set B with p(θ ∈ B|y) > 0, it must hold
that P(θi ∈ B happens infinitely often|θ0) = 1 ∀θ0

– aperiodicity: means that the chain cannot “cycle”
through a sequence of disjoint sets
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Metropolis-Hastings Algorithm

1. pick an initial value θ0, set i = 0

2. draw θ∗ from a jumping distribution J(θ∗|θi)

3. compute the jumping ratio for θ∗:

r =
p(θ∗|y)J(θi|θ∗)
p(θi|y)J(θ∗|θi)

4. set the next simulated θi+1 as

θi+1 =





θ∗, with probability min(r, 1)

θi, with probability 1−min(r, 1)

5. set i = i + 1 and go to step 2
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• note the difference to rejection sampling: if θ∗ is
“rejected”, the previous value θi is repeated instead of
discarded

• if the jumping distribution is symmetric
(J(θ∗|θi) = J(θi|θ∗)), then r = p(θ∗|y)/p(θi|y) and
the algorithm is called the Metropolis algorithm

• M-H and its special cases are widely used due to
their properties which follow from theory of Markov
Chains
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• M-H has the posterior as the stationary distribution
(demo exercise)

• π−irreducibility is case-specific (usually a positive
jumping distribution guarantees it)

• Harris-recurrence follows from π-irreductibility for
M-H

• aperiodicity (case-specific, holds for most jumping
distributions)
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• some theoretical results for M− H:

– Harris-recurrent, π−irreducible, aperiodic chain with
a stationary distribution converges to the stationary
distribution from any starting value

– above assumptions and E(|h|) < ∞ are enough to
show that

lim
1
n

n

∑
j=1

h(θ j) = E(h(θ)) almost surely
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• M-H solves the computational problem of Bayes in
theory

• in practice, the initial value biases early samples and
the jumping distribution affects convergence speed

• long jumps are rejected, and short jumps converge
slowly

• demo: metropolis.R and metropolis2.R
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• lots of heuristic simulation methods have been
proposed, perhaps because MCMC methods are
computationally intensive and somewhat brute-force
solutions

• either they are special cases of M-H, or not. In the
latter case, it may be difficult to know that they will
converge to E(h(θ)|y)

• lets go through a couple of special cases of M-H
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Gibbs Sampler

• if θ is multivariate and full conditional posteriors are
known and easy to sample from, then it is possible to
use the Gibbs sampler

• one must be able to simulate all full conditional
posteriors

p(θk|y, θ1, . . . , θk−1, θk+1, . . . , θm)
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• one iteration of the Gibbs sampler can be defined as
follows:

1. the full sample θi = (θi
1, . . . , θi

m)′ has been drawn

2. the next component θi+1
1 is drawn from

p(θ1|y, θi
2, . . . , θi

m)

3. then θi+1
2 is drawn from p(θ2|y, θi+1

1 , θi
3, . . . , θi

m)

4. obtain all components of θi+1 as above

5. increase i to i + 1 and start again
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• Gibbs is a special case of M-H with jumps changing
one component at a time

• stationary distribution is the posterior since Gibbs is
M-H

• the jumping distribution is obtained from the full
conditional posteriors

• the acceptance ratio turns out to be one, so all jumps
are accepted (see Gelman, 1st edition, p. 328)

• demo: gibbs.R
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• independence sampler: set J(θ∗|θi) = g(θ∗)

• jumping distribution is independent of the previous
state θi

• jumping ratio is

r =
p(θ∗|y)g(θi)
p(θi|y)g(θ∗)

=
w(θ∗)
w(θi)

• w is the importance ratio seen in importance sampling

• if g(θ) = p(θ|y), then all jumps are accepted and we
obtain direct sampling
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• Langevin algorithms include a term that directs
jumps toward posterior modes

• example:

J(θ∗|θi) ∝ exp(− 1
2σ2‖θ∗ − θi − σ2

2
(log p(θi|y))′‖2)

• the jumping distribution is a Normal distribution
with mean θi + σ2

2 (log p)′

• the derivative of the log-posterior moves the mean
towards a (local) posterior mode, thus hopefully
achieving faster convergence
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• in theory, the fact that MCMC does not result in
independent samples is not a problem

• this depends on the convergence of the MC integral
despite dependent samples

• but asymptotic results are just that: “asymptotic”
does not mean “holds for a very large but finite
number of samples”

• in practice, it is important to known how good is the
MC approximation computed from the finite set of
samples
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• dependent samples make it difficult to say anything
general about the finite-sample properties of MC
approximation

• intuition from iid samples can go wrong: MCMC can
spend a lot of time in some small area of the
posterior, then jump to another are and spend a lot of
time in there

• Monte Carlo integral can have a large error unless the
samples represent the posterior well as a set

• for example, having samples from one mode of a
bimodal distribution does not yield good MC
approximations
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MCMC Convergence

• here, convergence is nonrigorously defined as
“samples begin to represent the posterior well
enough”

• in practice, inital value θ0 biases the early samples

• the chain spends some time simulating samples that
do not represent the correct posterior well, as seen in
the demo
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• what to do about the early samples?

• run the chain until convergence and discard the early
samples

• after convergence, keep all samples (or take every
k:th sample)

• but knowing when the chain has converged is not
generally possible
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• in practice, one should be able to

1. find out the convergence speed, and use it to
estimate how many samples need to be discarded

2. examine the samples as they are simulated, and
try to decide whether the chain has converged

• no completely general method has not been found to
date
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• some heuristics:

– run parallel chains from different starting points
(avoid local modes)

– compare the variance within chains and between
chains (if between chains much larger, then no
convergence)

– simulate starting point(s) from a crude posterior
approximation (avoid slow convergence towards
posterior mode(s))
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LECTURE 9: 21.3.2007

POSTERIOR APPROXIMATION: LAPLACE AND
VARIATIONAL METHODS
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Parametric Approximation

• some ways to compute the posterior:

– normalizable closed-form (rarely possible)

– MCMC (works in theory, convergence is generally
very slow)

– parametric approximation
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• closed-form is obviously a good choice when
possible

• MCMC can become infeasible in ’large’ problems

• MCMC works if computational costs and memory
costs are ignored

• since costs always matter, parametric approximation
can be a practical compromise between accuracy and
cost of implementing and computing the solution
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• this compromise is generally not optimal

• approximate posterior is a wrong posterior, so the
choice is between different wrong solutions

• since wrong solutions have consequences, their cost
should also be considered

• a probability model does not contain information
about such costs
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• therefore any single approximation even for the same
model cannot be generally optimal

• for example, the same model might describe the
absorption of aspirin and the absorption of an
antibiotic. Consequences of errors are certainly
different.

• in practice, approximations have to be made even if
non-probability costs are not explicity considered

• it is better to think about different approximation
methods as heuristics with varying properties
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• pros/cons of parametric approximation

– simple representation of the posterior

– possibly low computational cost

– overfitting (or underfitting)

– accurate approximation often means high
computational cost
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Point Estimation

• simplest posterior approximation method is point
estimation

• meaning: choose a single value θ0, and use it to
represent the posterior

• formally the point estimate is the Dirac function
δ(θ − θ0)
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• examples:

– posterior mean: θ0 = E(θ|y)

– posterior median (cont θ): P(θ ≤ θ0) = 0.5

– posterior mode: θ0 = argmaxθ0
p(θ0|y)

– minimum mean-square: θ0 = argminθ0
E((θ − θ0)2|y)
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• for some approximations, many of these are
equivalent

• e.g. a Normal distribution has the same mean, mode,
median and MSE (computed wrt to the Normal)

• the posterior mode has some properties that warrant
further discussion

• if p(θ) ∝ c, then the posterior mode is the maximum
likelihood estimate
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• in general, the posterior mode is called the
MAP-estimate (maximum a posteriori)

• there are certain classes of models, for which the
posterior mode can be found iteratively using the
EM-algorithm

• more on this in the next lecture
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• “Bayes Central Limit Theorem”: if

y1, y2, . . . , yn is i.i.d. from p(y|θ0) =⇒
p(θ|y1, . . . , yn) → N(θ|θ0, (nI(θ0))−1)

as n goes to infinity (see Gelman for assumptions)

• I(θ0) is the Fisher information (used earlier to define
the Jeffreys’ prior)

• the covariance (nI)−1 goes to zero when n → ∞

• motivates the use of posterior mode, although this
holds only asymptotically
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Laplace Approximation

• point estimates ignore posterior uncertainty

• variance can be added to a point estimate to obtain
local uncertainty

• Bayes CLT suggests approximating the posterior by a
Normal distribution

• the mean is the posterior mode, and the variance is
fitted to the posterior at the mode
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• suppose we have found the posterior mode θ0

• Taylor-expand log p(θ|y) at the mode:

log p(θ|y) = log p(θ0|y) + (log p(θ0|y))′(θ − θ0)

+
1
2
(log p(θ0|y))′′(θ − θ0)2 + . . .

• posterior is maximized at θ0 so

(log p(θ0|y))′ = 0
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• we also know that (log p(θ0|y))′′ < 0 since θ0 is the
mode

• dropping higher terms and taking exponents gives

p(θ|y) ≈ p(θ0|y) exp(−1
2
(−(log p(θ0|y))′′)(θ − θ0)2)

• this is a Normal distribution of θ
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• this works even if p(θ|y) is not normalized, since the
exponent tells us the mean and the variance

• we obtain p(θ|y) ≈ N(θ|θ0, σ2)

• the mean is obviously θ0

• a Normal density has the exponent − 1
2σ2 (θ − θ0)2
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• therefore the variance is

σ2 =
−1

(log p(θ0|y))′′

• the variance does not depend on the normalization of
p(θ|y) due to the logarithm and the differentiation

• if needed, one can compute the normalization factor

1√
2πσ2

=

√
−(log p(θ0|y))′′

2π
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• one can also Laplace-approximate integrals

E(h(θ)|y) =
∫

h(θ)p(θ|y)dθ

• use the same idea, but approximate the integrand
z(θ) = h(θ)p(θ|y) around its mode θ0

• Taylor-expand log(z(θ)) and take exponent:

z(θ) ≈ z(θ0) exp(
1
2
[log(z(θ0))]′′(θ − θ0)2)
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• this is an unnormalized Normal distribution with
mean θ0 and variance

σ2 =
1

−(log(z(θ0)))′′

• the integral is approximated as follows:

E(h(θ)|y) ≈
∫

z(θ0) exp(− 1
2σ2 (θ − θ0)2)dθ

= z(θ0)
√

2πσ2
∫ 1√

2πσ2
exp(− 1

2σ2 (θ − θ0)2)dθ

= z(θ0)
√

2πσ2
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• the last integral vanished since its over N(θ|θ0, σ2),
which is a normalized probability distribution

• the Laplace-approximation is

E(h(θ)|y) ≈ z(θ0)

√
2π

−(log(z(θ0)))′′

• note that θ0 is the mode of z(θ) and not p(θ|y)
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• Laplace approximation allows local model averaging
around the model: i.e. it describes the posterior
uncertainty locally

• however, the approximation is centered on posterior
mode so most point estimation problems remain

• when there are multiple modes and the highest one
is a bad solution, Laplace approximation fails just as
point estimates do

• demo: laplace.R
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Kullback-Leibler Divergence

• posterior approximation can be thought like this:

1. the true posterior is p(θ|y)

2. the approximate posterior is q(θ), constrained in
some way (e.g. a parametric distribution)

3. the problem is to find q(θ) that is ’as close as
possible’ to p(θ|y)

• how to measure the closeness of distributions?
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• denote a measure between distributions as D(p, q)

• there is no unique way of choosing the measure: the
reasons are the same that discredit point estimation

• for example if D(p, q) ¿ D(p, q′), it is possible that q
causes a very costly error while q′ doesn’t

• probabilites cannot measure such costs so there is no
generally optimal measure
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• Kullback-Leibler divergence is an information-theoretic
measure between distributions

• KL divergence is defined as

D(q‖p) =
∫

q(θ) log
q(θ)
p(θ)

dθ

• some properties: D(p‖q) is

– nonnegative: D(p‖q) ≥ 0

– equal to zero iff q = p

– not symmetric: D(p‖q) 6= D(q‖p)
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• there is a coding interpretation of KL divergence

• a discrete random variable x can be coded with
average number of bits equal to its entropy

• each xi has codelength − log p(xi)

• entropy is H(x) = −∑i p(xi) log p(xi)

• assume we guess the distribution of x as q(x)
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• the average codelength must be computed over the
real distribution, so we obtain

Hq(x) = ∑
i
−p(xi) log q(xi)

• the KL divergence D(p‖q) is now

D(p‖q) = ∑
i

p(xi) log
p(xi)
q(xi)

= −H(x) + Hq(x)

• then H(x) + D(p‖q) = Hq(x), which means that the
KL divergence is the number of extra bits caused by
using the wrong distribution q(x)
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Variational Approximation

• variational approximation means finding q(θ) which
minimizes D(q‖p), and using it as the approximate
posterior

• the coding interpretation involved D(p‖q), not
D(q‖p)

• variation approximation uses D(q‖p) because
integration is performed over q(θ), not over the
intractable p(θ|D)

• since KL divergence is not symmetric, in general,
D(q‖p) 6= D(p‖q)
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• example: discrete θ ∈ {θ0, θ1, . . . }
• point estimate: q0, q1, . . . with qi ∈ {0, 1}, ∑i qi = 1

• posterior: p0, p1, . . . , ∑i pi = 1, pi ≥ 0

• KL divergence is

D(q‖p) = ∑
i

qi log
qi

pi

= log
1
pj

(only one nonzero qj)

• min D is obtained by maximizing pj, so we get the
posterior mode as the result
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• the variational approximation in general tries to
match the posterior area with the largest probability
mass

• naturally the way the probability mass is measured
depends on the approximating distribution q(θ)

• in the posterior mode example, the posterior mass is
measured at a single point

• if q(θ) is for example a Normal distribution, then the
results are different
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• example: multimodal posterior

• posterior mode is at a point where p(θ|y) is
maximized

• but if the mode is on top a very narrow peak, it may
be that the posterior mass contained in that peak is
small

• variational approximation generally finds the peak
with most posterior mass (exercise)

• demo: varnorm.R

355



• in variational approximation q(θ) must be
constrained: otherwise q(θ) = p(θ|y) and we get
nowhere

• if q(θ) is a parametric distribution, minimizing
KL-divergence is a parametric optimization problem

• in free form approximation it is only assumed that q(θ)
is factorizable: q(θ) = q(θ1)q(θ2) . . . q(θd)

• this makes minimizing KL divergence a functional
optimization problem
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Freeform Approximation Example

• independent data y1, . . . , yn from N(µ, λ−1)

• λ is the precision (inverse of variance)

• the Jeffreys’ prior for the mean is p(µ) ∝ 1

• for the variance σ2, Jeffreys’ prior is p(σ2) ∝ σ−2

• since λ = σ−2, we have to transform the prior:

p(λ) = p(σ2)
∣∣∣∣
dσ2

dλ

∣∣∣∣ ∝ λ

∣∣∣∣
dσ2

−λ2dσ2

∣∣∣∣ = λ−1
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• posterior is

p(µ, λ|y) ∝ p(y|µ, λ)λ−1

• denote y = 1
n ∑i yi

• solve the variational approximation
q(µ, λ) = q(µ)q(λ)
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• assume that q(λ) is known

• find q(µ) that minimizes D(q‖p), keeping q(λ) fixed

• to simplify notation, all constant terms wrt the
current minimization are dropped (e.g log q(λ) in the
next slide)

• the notation Eλ means an expectation over q(λ)

• Eµ is defined correspondingly
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D(q‖p) = Eµ Eλ log
q(µ)

p(y|µ, λ)

= Eµ Eλ

[
log q(µ) +

λ

2 ∑(yi − µ)2
]

= Eµ

(
log q(µ) +

1
2

[Eλ λ] ∑
i
(yi − µ)2

)

= Eµ

(
log q(µ) +

1
2

A ∑
i
(yi − µ)2

)

• the quantity A is known, since Eλ λ =
∫

λq(λ)dλ
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• we can write

Eµ

(
log q(µ) +

1
2

A ∑
i
(yi − µ)2

)
= Eµ log

q(µ)
p′(µ)

= D(q(µ)‖p′(µ))

• straightforward calculation gives

p′(µ) = N(µ|y, λ−1
1 ), λ1 = An

• setting q(µ) = p′(µ) minimizes D(q‖p′) and thus
minimizes the original KL-divergence

• first step has been completed and q(µ) is known
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• next, find q(λ) by minimizing the KL-divergence

D(q‖p) = Eλ Eµ log
q(λ)

p(y|µ, λ)p(λ)

= Eλ

(
log

q(λ)
p(λ)

+ Eµ [− log p(y|µ, λ)]
)

• the expectation over q(µ) gives a function of λ:

Eµ [− log p(y|µ, λ)] = −n
2

log λ +
1
2

λ(nλ−1
1 + S)

= F(λ)

S = ∑
i
(yi − y)2
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• then the KL-divergence is

D(q‖p) = Eλ

(
F(λ) + log

q(λ)
p(λ)

)

= Eλ log
q(λ)
p′(λ)

= D(q‖p′)

• this results in a distribution

log p′(λ) = −F(λ) + log p(λ)

=
n
2

log λ− 1
2

λ(nλ−1
1 + S) + log p(λ) =⇒

p′(λ) = λn/2−1 exp(−λ

2
(nλ−1

1 + S))
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• the Gamma distribution Γ(a, b) has density

Γ(θ|a, b) ∝ θa−1 exp(−bθ)

• therefore q(λ) = Γ(n
2 , 1

2(nλ−1
1 + S))
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• each step started from an assumption that the other
distribution is known

• since in the beginning neither distribution is known,
these steps should be iterated several times

• the parametric form of each distribution is obtained
in the first iteration but the parameter values can
change

• demo: freeform.R
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LECTURE 10: 28.3.2007

LATENT VARIABLE MODELS

366



Latent Variable Models

• we have used regression as an example of a learning
problem

• data includes both inputs x and corresponding
outputs y

• if some or all inputs x are unobserved, then we end up
with a latent variable model
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• a toy example: learning a bit-to-bit function

• observe input x(n) ∈ {0, 1} and output y(n) ∈ {0, 1}
• suppose you have x(0) = 0, y(0) = 0 and

x(1) = 1, y(1) = 1

• what’s p(y(2)|x(2))?
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• it seems that the situation is symmetric wrt 0 and 1

• but if there is a latent input z(n) so that

p(y(n) = 1|x(n) = 1 or z(n) = 1) = 1

p(y(n) = 0|x(n) = 0 and z(n) = 0) = 1

• then y(2) = 1 is more probable than y(2) = 0

• point: existence of the input z(n) affects the
prediction even if z(n) is never observed
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• some ways of coming up with a latent variable
model:

– such a model is realistic in the problem (e.g. ICA,
image deblurring or superresolution)

– model does not fit the data: perhaps some unobserved
input causes this

– adding latent variables helps solving the model
(mixture models)
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• in neurocomputing, unsupervised learning methods
are latent variable models

• clustering can be thought of as a latent variable
model

• the latent variable would define the cluster index for
each observation

• PCA explains the outputs as linear combinations of
unobserved principal components
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• in the computer assignment the observed data is the
output and the high-resolution image the
unobserved input

• the pixel intensities of the high-res image are latent
variables

• qualitatively speaking, latent variables are
“data-like” parameters

• it is natural to think of pixel intensities as data
instead of parameters
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• unsupervised learning methods in general are taught
in other courses in detail

• lets concentrate on mixture models, especially Normal
Mixtures

• benefits: many latent variable models can be thought
of as mixture models, computational benefits
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Normal Mixtures

• consider data y = {y1, . . . , yn} where each yi has a
multimodal distribution with m modes

• lets attempt to model the data using m different
Normal distributions N(µj, σ2

j )

• we’ll construct the mixture model by assuming that
each yi has been generated by a specific mixture
component N(µj, σ2

j )

• yi is not Normally distributed, because we don’t know
which component has generated it
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• what is the distribution of yi?

• lets add latent variables, which indicate the guilty
distribution

• indicators Lij ∈ {0, 1}:

Lij = 1 means that yi belongs to component j
m

∑
j=1

Lij = 1, each data point belongs to exactly one component
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• lets define λj as the probability that Lij = 1 when yi is
unknown

• a benefit of the indicators is that they simplify the
model

• the complete-data likelihood is (exercise)

p(yi, Li·|θ, λ) =
m

∏
j=1

(λjN(yi|µj, σ2
j ))

Lij
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• integrate out the latent variables so that Lik = 1 when
k = 1:

p(yi|θ, λ) =
m

∑
k=1

m

∏
j=1

(λjN(yi|µj, σ2
j ))

Lij

=
m

∑
k=1

λkN(yi|µk, σ2
k )
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• observed data has distribution

p(y|θ, λ) =
n

∏
i=1

m

∑
j=1

λjN(yi|µj, σ2
j )

• when the product is expanded, the result is a sum
with mn terms

• this cannot be even maximized in closed form
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• full conditional posteriors are simpler (constant prior
for θ):

p(θ|y, L) ∝ ∏
j

∏
i:Lij=1

N(yi|µj, σ2
j ) (exercise)

p(Lik = 1|θ, y, λ) =
λkN(yi|µk, σ2

k )
∑j λjN(yi|µj, σ2

j )

• the probabilities λj are also unknown: the can be
easily estimated given the other parameters (exercise)
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• with enough mixture components, any distribution
can be closely approximated

• θ and λ cannot be solved in closed-form

• Gibbs Sampler is possible due to full conditional
posteriors

• but it has poor convergence properties
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• example: simulate a two-component mixture model

p(yi|θ, λ) = λ1N(yi|µ1, 1) + λ2N(yi|µ2, 1)

using Gibbs Sampler

• demo shows that there are serious convergence
problems

• demo: gibbsmixture.R
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• the posterior mode can be approximated using
Expectation Maximization

• first, lets motivate it by deriving something simpler

• consider the model

p(y|θ) =
n

∏
i=1

p(yi|θ) =
n

∏
i=1

[
λ1N(yi|µ1, σ2) + λ2N(yi|µ2, σ2)

]

where σ2 is known
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• find µ1 and µ2 that maximize the log-likelihood

log p(y|θ, λ) =
n

∑
i=1

log
(

λ1N(yi|µ1, σ2) + λ2N(yi|µ2, σ2)
)

• differentiate it (denoted by operator d):

d log p(y|θ, λ) =
n

∑
i=1

d log p(yi|θ, λ)

=
n

∑
i=1

[p(yi|θ, λ)]−1dp(yi|θ, λ)
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• to differentiate wrt µj, note that

∂p(yi|θ, λ)
∂µj

= λjN(yi|µj, σ2)σ−2(yi − µj)

• then we obtain as the derivative

∂ log p(y|θ)
∂µj

=
n

∑
i=1

σ−2(yi − µj)τij

τij =
λjN(yi|µj, σ2)

∑k λkN(yi|µk, σ2)
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• weight τij is close to one when yi is much closer to µj

than any µk with k 6= j

• also, τij = p(Lij = 1|θ, y, λ)

• can easily be computed if we know µ1, µ2, λ1, λ2
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• derivative
∂ log p

∂µj
=

n

∑
i=1

yi − µj

σ2 τij

is a weighted average of (y− µj)/σ2

• e.g. if y is on average larger than µj, the derivative
will be positive

• the average is easy to compute if all τij:s are known
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• lets maximize log p(y|θ) using Newton-Rhapson
iteration

µnew = µold − (log p)′/(log p)′′

• first derivative was just computed

• the second derivative is approximately computed in
the exercises
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• start by selecting initial values for the means and λ:s

• then compute τij:s

• then compute the derivatives and use
Newton-Rhapson

µj,new =
∑i p(Lij = 1|θ, yi)yi

∑i p(Lij = 1|θ, yi)
=

∑i τijyi

∑i τij
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• µj,new is an a weighted average of data

• the weights τij emphasise some observations more
than others

• for data not from component j, τij ≈ 0

• average is mostly over data from component j

• demo: twonormal.R
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Expectation-Maximization Algorithm

• the previous derivation suggests that the posterior
mode is a computationally feasible approximation

• there is a general algorithm for finding the posterior
mode for latent variable models

• it is called the Expectation-Maximization (EM)
algorithm for reasons seen later

390



• the finite mixture model motivates the EM algorithm

• we saw that it is easy to deal with distributions

p(L|θ, y) (discrete distribution)

p(θ|L, y) ∝ p(y|L, θ)
(Normal)

p(θ|L)

• but it is difficult to deal with p(θ|y) directly: this is a
product of a possibly multimodal or otherwise
difficult likelihood and a prior
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• we want to find θ that maximizes p(θ|y)

• Jensen’s inequality log E(x) ≥ E(log x) gives

log p(θ|y) = log
∫

p(θ, L|y)dL

= log
∫

q(L)
p(θ, L|y)

q(L)
dL

≥
∫

q(L) log
p(θ, L|y)

q(L)
dL = −D(q‖p)

= F(q, θ)
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• F(q, θ) bounds log p(θ|y) from below

• it can be written as

F(q, θ) = Eq(log p(θ, L|y))− Eq(log q(L))

• the EM-algorithm can be written as follows:

E-step maximize F(qn, θn−1) by choosing a maximizing
distribution qn given θn−1

M-step maximize F(qn, θn) by choosing a maximizing θn

iterate increase n and go to E-step
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E-step

• maximize F(qn, θn−1) = −D(qn‖p)

• due to properties of KL divergence,
qn(L) = p(θn−1, L|y) maximizes F(qn, θn−1)

• this step corresponds to the computation of τij:s

• q(L) allows us to compute

Eq(log p(θ, L|y)) =
∫

log p(θ, L|y)q(L)dL,
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M-step

• find θn which maximizes
F(qn, θn) = Eq(log p)− Eq(log qn)

• Eq(log q(L)) remains constant, so maximize

Eq(log p(θ, L|y)) =
∫

log p(θ, L|y)q(L)dL,

• this corresponds to setting µj,new = ∑i τijyi/ ∑i τij
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• maximizing F makes intuitive sense since it is a
lower bound to log p(θ|y)

• two problems: maximization of F is an iteration, and
F is only a lower bound

• in general, global maximum of p(θ|y) is not found
but each iteration of EM is guaranteed not to
decrease the posterior (exercise)
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Example: EM for Normal Mixture Model

• earlier example illustrates the results below

• the E-step gives the distribution q(L) as

τij = p(Lij = 1|θ′, yi) =
λjN(yi|µ′j, Σ′j)

∑k λkN(yi|µ′k, Σ′k)

• it tells the posterior probability that data yi comes
from mixture component j, given old values of
parameters θ′ (prime refers to old values)
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• M-step gives the update equations

λj =
1
N ∑

i
τij (mixture proportions)

µj =
∑i yiτij

∑i τij
(mean values)

Σj =
∑i τij(yi − µj)(yi − µj)T

∑i τij
(covariance matrices)

398



• note that the values µj used in updating Σj are the
new values, i.e. those that were just updated

• in the following demo, three clusters of 2D data are
generated

• a Normal mixture model is solved using the
EM-algorithm

• demo: emnorm.R
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Variational Approximation for Normal
Mixtures

• the derivation of EM-algorithm using KL-divergence
can be generalized

• minimize the function

F(λL, λθ) =
∫ ∫

q(L)q(θ) log
q(L)q(θ)
p(θ, L|y)

dLdθ

which is D(q(L)q(θ)‖p(θ, L|y))
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• substituting q(θ) = δ(θ − θ0) would give the function
−F(q, θ0) as in the EM-algorithm

• the variational approximation is more general, since
it allows an arbitrary approximation distribution q(θ)

• in the Normal mixture case, the approximating
distributions can be obtained using free-form
approximation
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• the notation λL and λθ refer to parameters that define
the approximating distributions q(L) and q(θ)

• for example, q(µj) is Normal so λθ contains the
parameters of that Normal distribution

• the problem is to find the values of these parameters
that minimize the KL-divergence
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• the EM-like algorithm is now

1. minimize F by choosing λL while keeping λθ fixed

2. minimize F by choosing λθ while keeping λL fixed

3. return to step 1 until convergence

• the full details of this example are quite complicated
and are omitted here

• the details can be found in the paper
A Variational Bayesian Framework for Graphical Models,
H. Attias, NIPS-10, 2001, MIT Press.
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• example: clustering data generated from a
three-component Normal mixture

• the number of components in the model can be larger

• prior for the component means is such that the mean
value (0, 0) is most probable (circled in the demo)

• ’unused’ components (those with very small
precision) can be identified as those which converge
to zero

• demo: varmixt.R
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• compromise between representing the data well
(many components) and avoiding overfitting (small
number of components)

• variational approximation avoids overfitting
automatically, since having too many components in
the model makes the posterior very narrow at the
mode

• there are numerous heuristics which attempt the
same thing, such as MDL, AIC, and regularization
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• the selection of components happens through
making some components unused

• when some component is far from data, its effect to
the posterior is mainly determined by the prior

• the prior is maximized by mean (0, 0) and zero
precision, so the “unused” components converge to
these values
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LECTURE 11: 4.4.2007

MISSING DATA
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Due to Easter Holiday, there are no
exercises on 6.4 and no lecture on 11.4
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Missing Data

• consider multivariate data yi ∈ Rd

• observe a few such vectors

y = (y1, y2, y3, y4, y5) =




1 2 3 4 5

2 3 1 0 7

3 7 2 5 8




• likelihood: p(y|θ) = ∏i p(yi|θ)
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• but what if your data is

y = (y1, y2, y3, y4, y5)

=




1 ? 3 4 ?

2 ? 1 0 7

1 or 7 7 in [2, 5] less than 9 8




• some components of yi are missing (value is not a
single number)

• this kind of data is not uncommon in real problems
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• with missing data, the posterior p(θ|y) depends
partly on unobserved data

• a heuristic solution: discard all vectors yi that are not
completely observed and proceed as usual

• but in the example, no vector is completely observed

• here, and often in practice, simply throwing away
data is not optimal
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• another heuristic: keep all the observed parts of y
(call them yobs), even if this means keeping only parts
of vectors

• not generally optimal for two reasons:

– the discarded components may carry some
information directly, such as “less than 9”

– the fact that a value is missing may give
information about the nonobserved value, and
therefore information about θ
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• missing values can contain lots of information

• in predicting the absorbtion of an orally
administered drug, bloodsamples are taken and the
drug concentration is analyzed

• i.e. data consists of nonnegative values measured at
certain times t1, t2, . . . , tm
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• for technical reasons, drug concentration below some
small value a > 0 cannot be measured

• these values become missing data

• but we do know that with high probability, these
values are in the very small interval [0, a]

• discarding these values obviously loses information
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• coin toss, probability of heads is θ

• observe some coin toss results and estimate θ

• for some reason, “heads” will not be observed with
probability 0.5, and “tails” with probability 0.25

• just using observed data underestimates θ
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• the probabilities define a missing data mechanism

• in this example, it is completely defined by data
(observed and missing)

• yobs alone does not define it here

• it would if the missingness probabilites were equal

• then using observed data would give correct results
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• general missing data mechanism

• extend the coin tossing example so that “heads” goes
missing with unknown probability φ

• now the missing data mechanism depends on data as
well as φ

• φ belongs to the posterior, and data gives
information about it: observing lots of “heads”
suggests that φ is small
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• in principle, one could solve the problem by
constructing a model for data, θ, φ, and “missingness
indicators”

• unknown quantities are missing values, θ, and φ

• this is complicated in practice: heuristics are often
used, or one can make sure that the missing values
can be ignored
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Missing Data Heuristics

• there exist many heuristics for handling models with
missing data

• some of them may be optimal in some cases, but
generally they are not

• exercises illustrate some cases where these heuristics
fail
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• list deletion: observed vector yi is discarded if one or
more of the components are missing

• for scalar data, this corresponds to ignoring all
missing data

• if the missing data mechanism is ignorable (defined
later), then list deletion does not bias the results

• but information is lost when the data is multivariate
since some observed components are discarded

420



• imputation: guess missing values

• mean imputation replaces missing values with the
mean of the observed values

• regression imputation uses regression on observed
data to guess the values

• even with reasonable imputed values, these methods
underestimate posterior uncertainty
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• above heuristics are generally non-Bayesian
(imputation can be Bayesian if several values are
simulated e.g. by MCMC)

• however, in some special cases they may correspond
to the Bayesian procedure

• starting from the proper Bayesian method, we see
some cases where missing data can be ignored

• at the same time we see the general way of handling
missing data
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Bayesian Treatment of Missing Data

• denote nonrigorously the complete data by
y = (yobs, ymis) (observed, missing)

• the meaning of yobs is that it represents the values of
all observed data (ymis correspondingly)

• define the complete data y as a matrix

• any of the elements can be missing (hence the
difficulty of proper notation for yobs and ymis)
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• define a matrix I with the same dimensions as y to
indicate missing components

• i.e. Iij = 0 if yij is missing and Iij = 1 if yij is observed

• I is known, since we know which parts of y are
missing
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• in general, we would like to compute p(θ|y)

• since p(θ|y) = p(θ|yobs, ymis), this posterior is useless
in practice since we don’t know ymis

• lets review what we have:

– knowns: yobs and missingness indicators I

– unknowns: ymis, θ, and φ (parameters for
missingness)

– we want to know p(θ|yobs, I)
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• the full posterior is obtained using the product rule:

p(θ, φ, ymis|yobs, I) =
p(θ, φ, ymis, yobs, I)

p(yobs, I)
∝ p(θ, φ, y, I)

= p(I, y|θ, φ)p(θ, φ)

• in the following, we assume that the complete-data
likelihood can be written as

p(I, y|θ, φ) = p(I|y, φ)p(y|θ)
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• meaning:

– p(I|y, θ, φ) = p(I|y, φ): missingness does not depend
on θ if y, φ are known

– p(y|θ, φ) = p(y|θ): given θ, data does not depend on φ

• marginalizing the full posterior over ymis and φ gives

p(θ|yobs, I) ∝
∫ ∫

p(I|y, φ)p(y|θ)p(θ, φ)dymisdφ
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Missing Data Mechanisms

• sometimes the difficult marginalization can be
simplified

• this depends on properties of the missing data
mechanism

p(I|y, φ)

• this is in general a function of all data (observed and
missing), the indicators and possibly φ
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Missing Completely at Random

• missing completely at random (MCAR) holds when

p(I|y, φ) = p(I|φ)

• the probability does not depend on the values of yobs

and ymis

• example: coin toss where each toss is missing with a
fixed probability
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Missing at Random

• missing at random (MAR) holds when

p(I|y, φ) = p(I|yobs, φ)

• missingness does not depend on values ymis

• generic example: yi = (ai, bi), always observe ai but
missingness of bi depends on ai only

• MAR is very useful, since with another assumption it
simplifies handling of missing data
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Observed at Random

• observed at random (OAR) holds when

p(I|y, φ) = p(I|ymis, φ)

• missingness does not depend on observed values yobs

• this case is not very useful on its own
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Neither MAR nor OAR

• missing data is neither MAR nor OAR when

p(I|y, φ)

cannot be simplified by removing values of y

• this is the general case, and thus requires the full
marginalization derived above

• sometimes called non-ignorable but this can be
confusing, as seen later

• in the drug absorption example, missingness
depends on the value y compared with the threshold:
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model is neither MAR nor OAR
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• note that in the above definitions, the given condition
must hold for all pairs y, I

• for example in MAR, p(I|y, φ) must be a function of
only those values yij for which Iij = 1

• this must hold for any possible pair y, I
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• if p(θ|yobs) = p(θ|yobs, I), then the missing data
mechanism can be ignored

• this missing data property is called ignorability

• warning! even though neither MAR nor OAR is called
non-ignorable, it does not mean that all other cases
are ignorable!
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• what can we do when missing data is ignorable?

• for ignorable missing data mechanism we get

p(θ|yobs) ∝ p(yobs|θ)p(θ)

=
∫

p(y|θ)p(θ)dymis

• so it is enough to integrate the missing data out from
the complete data model

• without ignorability, one ends up integrating over
p(y|θ, I) which is usually complicated
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• ignorability can be guaranteed in certain special cases

• MAR (missing at random) means that

p(I|y, φ) = p(I|yobs, φ)

• i.e. the missing values do not affect the indicators

• MAR alone does not guarantee ignorability!
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• the indicators can still depend on φ

• if missing data mechanism is MAR and condition
p(φ|θ) = p(φ) (denote as φ ⊥⊥ θ) holds, then we
obtain ignorability

• antiexample: data are measurements of an object
weighing θ kilos. If the scale has problems in
weighting heavy objects, then φ (failure probability)
and θ (the weight) are not independent

• model can still be MAR, since given φ, the
missingness values I can be independent of ymis
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• MAR, φ ⊥⊥ θ =⇒ ignorability:

p(θ|yobs, I) ∝
∫ ∫

p(I|y, φ)p(y|θ)p(θ, φ)dymisdφ

MAR=
∫ ∫

p(I|yobs, φ)p(y|θ)p(φ|θ)p(θ)dymisdφ

φ⊥⊥θ
=

∫ ∫
p(I|yobs, φ)p(y|θ)dymis p(θ)p(φ)dφ

= p(θ)
∫

p(y|θ)dymis

∫
p(I|yobs, φ)p(φ)dφ

∝ p(θ)p(yobs|θ)
BT
∝ p(θ|yobs)
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• as always, closed-form results are often difficult

• there are two main approaches (assume ignorability):

– approximate p(θ|yobs) e.g. by the EM-algorithm

– simulate p(θ, ymis|yobs)

• obtaining simulated values of ymis is called multiple
imputation

• these imputed values can be used later to apply
methods that cannot handle missing data
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EM for Missing Data

• missing data ymis can be thought of as latent variables

• the EM-algorithm for an ignorable case is easy

E-step: q(ymis) = p(ymis, θ|yobs)

M-step: maximize
∫

log p(ymis, θ|yobs)q(ymis)dymis
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Data Augmentation

• assume that missingness is ignorable and p(θ|yobs) is
difficult to approximate

• p(ymis|yobs, θ) is generally simpler

• also the posterior p(θ|ymis, yobs) = p(θ|y) is often
simpler than p(θ|yobs)

• two unknowns θ, ymis, and two “easy” full
conditional posteriors
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• data augmentation:

1. set i = 1, choose initial approximation p1(θ|yobs)

2. simulate θ1, . . . , θm from pi(θ|yobs) and then
simulate yj

mis, j = 1, . . . , m from

p(ymis|θ j, yobs)

3. approximate pi+1(θ|yobs) as a mixture

pi+1(θ|yobs) ∝
m

∑
j=1

p(θ|yj
mis, yobs)

4. set i := i + 1 and go to step 2
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• DA uses the same full conditional posteriors as the
Gibbs Sampler

• if you simulate just one ymis (m = 1), then DA is
Gibbs Sampler

• the DA algorithm can be shown to converge in a
certain sense

• as in Gibbs Sampler, the important part is to be able
to simulate the full conditional posteriors
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• p(ymis|yobs, θ) is often easy to simulate

• but p(θ|y) is as difficult as without missing data

• heuristically, one may simulate the distributions
using any simulation methods, for example MCMC

• one should be careful to try to obtain an independent
set of simulated values
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• assume you have a DA/Gibbs Sampler for
nonmissing data

• in the ignorable case,just add ymis to the model

• the steps to simulate θ are unchanged (φ and I cause
complications in non-ignorable cases)

• reason: the unknown ymis is assumed to be known in
these steps
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• ymis is simulated from p(ymis|yobs, θ)

• this is often easy due to known θ

• a possible complication is that ymis is not always
independent of yobs, given θ

• example: p(y|θ) = N(y|µ, Σ), y ∈ R2

• if y = [yobs, ymis]′ (observe only the first component),
then p(ymis|yobs, θ) is not p(ymis|θ)
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• in the exercises, the Gibbs sampler is used to
simulate a Normal model with missing data

• consider Normal data in R2 where some of the
second components are missing

• compare list deletion, mean imputation, and Gibbs
sampling in estimating a Normal model

• demo: gibbsmissing2.R
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LECTURE 12: 18.4.2007

GAUSSIAN PROCESSES
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Gaussian Processes

• so far the emphasis has been on solving a learning
problem with a given model

• the probabilistic model links the unknown quantities
θ and data

• the model should be constructed using the
information available about the problem

• without a model (implicit or explicit), there is no
learning
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• practical difficulties:

– closed-form results often difficult or impossible

– approximations computationally heavy (simulation)

– sometimes difficult to specify the model if θ has no
clear interpretation
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• above difficulties may be unavoidable if accurate
results are needed

• local learning was discussed early in the course

• it was demonstrated that certain “all-purpose”
learning methods essentially learn locally

• this means that prediction will depend on nearby
observed data

• the intuitive idea: if inputs xi, xj are close, then
outputs yi, yj should have similar values
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• this amounts to an implicit model which favours
“smooth” solutions

• technically this works no better than any other
method (NFL theorems)

• but what if the information available is “smooth
solutions are more probable”?

• a model is needed which places a high prior
probability on smooth regression functions
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• consider a parametric regression model, such as
y = f (x|θ) + n

• the prior is over parameter θ, not the function f (x|θ)

• given θ, is f (x|θ) regular or rapidly varying?

• for complicated models this may not be easy to
determine
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• solving a given learning problem, prior for θ comes
from problem-specific information

• in general-purpose methods, parameters often have
no direct meaning

• defining the prior over the functions f (x|θ) may be
easier

• no fundamental difference: with “equivalent” priors,
all predictions will be identical
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• example: likelihoods g(x|γ) and f (x|θ)

• assumption: for any γ there is θ so that
g(x|γ) = f (x|θ) for all x (and vice versa)

• also assume that p(γ) and p(θ) are such that the
same functions get the same prior probability

• then all predictions are the same whether you use
f (x|θ) or g(x|γ)
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• Gaussian Processes allow solving a regression problem
in closed form without requiring a prior on abstract
parameters

• can be developed as a parametric model, or using a
prior for a stochastic process generating the data

• parametric model corresponds to earlier results, but
the equivalent process approach is simpler

• GP classification does not yield closed-form results,
but requires approximations
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Bayesian Regression

• Gaussian regression: likelihood is

p(y|H, θ) = N(y|Hθ, σ2 I)

• H is a known matrix, and is a function of inputs xi

• example:

y1

y2


 =


1 x1

1 x2





θ1

θ2


 +


n1

n2




• this means yi = θ1 + θ2xi + ni, ni ∼ N(0, σ2)
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• one can also define [H]ij = hj(xi), where hj is some
known, nonlinear basis function

• note that this is similar to the Support Vector
Machine

• the linear regression on the “features” h(xi) becomes
nonlinear regression on the inputs xi

• the solution is equally easy in both cases, except for
computational complexity
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• we are interested in predicting the output ỹ for a new
input x̃:

p(θ|y) ∝ p(y|θ)p(θ)

p(ỹ|y) =
∫

p(ỹ|θ)p(θ|y)dθ

• the prediction does not depend on θ, since it is
marginalized out

• however, we need the prior for θ before it can be
marginalized
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• lets choose a Normal prior for θ:

p(θ) = N(θ|0, σ2
0 I)

• the outputs of the regression function form a vector

Y = Hθ =
m

∑
j=1

θjhj

• Y is a random vector and its distribution is induced
by p(θ)

• Y is a zero-mean Normal vector since it is a linear
combination of Normally distributed zero-mean
variables
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• the covariance matrix of Y is

E(YY′) = H E(θθ′)H′ = σ2
0 HH′

• this gives the induced prior on Y:

p(Y) = N(Y|0, σ2
0 HH′) = N(Y|0, Q)

• p(θ) is the parametric prior, and p(Y) is a prior on the
data itself
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• the random vector Y contains the noiseless, linear
outputs of the model

• we ultimately need the observable, noisy outputs y

• the predictive distribution of y is

p(y) = N(y|0, Q + σ2 I) = N(y|0, C) (noise is zero-mean and independent of Y)

• the prior p(y) is a function of known quantities
H, σ2

0 , σ2
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• the covariance C = σ2
0 HH′ + σ2 I defines p(y)

• each element of the covariance matrix is

[C]ij = σ2
0 ∑

k
hk(xi)hk(xj) + σ2δij

• the “feature vector” of input xi is

h(xi) = [h1(xi), h2(xi), . . . , hm(xi)]′

• then [C]ij is essentially an inner product between
h(xi) and h(xj) (compare with SVM again)
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• summary:

– linear regression becomes nonlinear with
nonlinear feature space

– parameters θ can be integrated out, leaving a
Normal distribution over outputs y

– covariance matrix contains inner products of
feature vectors
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• can we do regression without parameters?

• define a prior on observable outputs y as
p(y) = N(y|0, C)

• define covariances as functions of inputs:
[C]ij = D(xi, xj)

• it can be computed if D is known, since all inputs xi

are known
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• the covariance function D(x, x′) must be chosen
(compare with the kernel function in SVM)

• all covariances E(yiyj) = D(xi, xj) can then be
computed

• only restriction for D(x, x′) is that the matrix C
computed using it must be positive semidefinite

• the Gaussian Process prior N(y|0, C) is then
completely defined without a parametric model
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Gaussian Process Predictions

• lets solve the regression problem using

p(y) = N(y|0, C)

• predict ỹ at an input x̃, given y and x

• the predictive distribution is obtained by

p(ỹ, y) = p(ỹ|y)p(y)

=⇒ p(ỹ|y) = p(y, ỹ)/p(y)
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• the joint distribution p(y, ỹ) is Normal and not
conditional to anything

• it is given by the prior N(0, C̃)

• the matrix C̃ is computed at all pairs from
{x1, . . . , xn, x̃}

• the predictive distribution is easily seen to be Normal
since it is obtained by considering p(y, ỹ) with y
known
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• the covariance matrix C̃ of (y, ỹ) can be partitioned as

C̃ =


C k

k′ c




C = covariance matrix of y

k = [D(x1, x̃), . . . , D(xn, x̃)]′, a vector

c = D(x̃, x̃), a scalar

• this gives a predictive distribution

p(ỹ|y) ∝ exp[−1
2
(y, ỹ)′C̃−1(y, ỹ)]
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• a partitioned matrix C̃ has a partitioned inverse:

C̃−1 =


M m

m′ µ




where

µ = (c− k′C−1k)−1

m = −µC−1k

M = C−1 +
mm′

µ
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• putting these into the equation for the predictive
distribution, we find

p(ỹ|y) ∝ exp
[
− (ỹ− k′C−1y)2

2(c− k′C−1k)

]

• can we compute this?

• yes, since c, C, and k depend only on points x and x̃
which we know

• note that the matrix C−1 depends only on training
data and not x̃

472



• summary of regression using a Gaussian Process:

1. choose a covariance function D(xi, xj), use it to
compute C and then invert C

2. choose x̃ as the point at which you want to predict
ỹ: compute k and c using the covariance function

3. compute the mean of predictive distribution:
k′C−1y

4. compute the variance of the predictive
distribution: c− k′C−1k
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• the results depend on the covariance function, which
directly speficies properties of the actual data

• one can easily implement various kinds of
smoothness assumptions through it

• for example, a high positive covariance when
‖x− x′‖ is somewhat large favours very smooth
solutions
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• an exponential covariance can be derived from a
neural network with an arbitrary number of neurons
(exercise)

• the covariance works even when the number of
neurons approaches infinity

• lets examine the effects of covariance functions using

D(x, x′) = a exp(−1
2

(x− x′)2

b2 ) + cδ(x, x′)

• demo: gpreg.R
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• the simple solution presented above relies on a
known D(x, x′)

• this may be unrealistic: some properties of the
covariance may be unknown

• the noise variance is the most obvious example

• with fixed D(x, x′), smoothing of data is constant wrt
number of training points

• Bayesian solution: add parameters θ to the
covariance function

476



• predictions are averaged as

p(ỹ|y) =
∫

p(ỹ|y, θ)p(θ|y)dθ

• the first term in the integrand is the Normal
predictive distribution for a given θ

• but its dependence on θ is quite complicated: θ

appears in the covariance typically in a nonlinear
manner
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• we can approximate by computing the MAP estimate
θ̂, and then using p(ỹ|y, θ̂)

• to do this, maximize

log p(θ|y) = log p(y|θ) + log p(θ) + D

• the log-likelihood part and its derivative are

log p(y|θ) = −1
2

log |C| − 1
2

yTC−1y + D2

(log p(y|θ))′ = −1
2

tr(C−1C′) +
1
2

yTC−1C′C−1y
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• the log-prior must also be derivated: then we obtain
a gradient for log p(θ|y) wrt θ, and we can use
gradient ascent to estimate the most probable θ

• example: use the same covariance as before, with
parameters a, b and c, and use gradient ascent to
optimize covariance parameters

• demo: gphier.R
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Gaussian Processes for Classification

• technically classification is regression, but a realistic
model for classification is usually different

• example: class labels (outputs) in {−1, 1}
• outputs are not assumed to have noise (labels are

either −1 or 1, not e.g. 0.2)

• even if outputs are modeled as noisy class labels, the
training outputs are noise-free
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• goal is to classify a new input x̃ given D (containing
inputs x1, . . . , xn and outputs y1, . . . , yn)

• GP regression is not directly applicable because it
requires a Normal distribution for the outputs

• use latent variables u1, . . . , un which are obtained by
GP regression on inputs xi

• the class label distribution p(y = 1|u) must be
defined
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• examples:

– ’hard’ classifier: p(y = 1|u) = 1 when u > 0

– ’soft’ classifier: p(y = 1|u) = Φ(u/α), where
Φ(x) =

∫ x
−∞ N(y|0, 1)dy (cdf of a Normal distribution)

• the regression x 7→ u does most of the work

• the nonlinear p(y = 1|u) simply scales the outputs to
probabilities
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• denote by ũ the latent variable corresponding to x̃

• also denote by u = (u1, . . . , un) the latent variables
corresponding to the training inputs

• the predictive distribution (write U = (u, ũ)) is

p(ỹ = 1|x̃, D) =
∫

p(ỹ = 1, U|x̃, D)dU

=
∫

p(ỹ = 1|ũ)p(U|x̃, D)dU

=
∫

p(ỹ = 1|ũ)p(ũ|u, x̃, D)p(u|x̃, D)dU
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• lets examine the factors in the integral:

– p(ỹ = 1|ũ) is a known function of ũ (chosen earlier)

– p(ũ|u, x̃, D) is GP regression (predict output ũ using
u)

– p(u|x̃, D) is difficult, since D has only the outputs
yi ∈ {−1, 1}

• for realistic classifier models, no closed-form solution
exists
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• there are several methods to solving GP classification
approximately:

– simulation (Radford Neal)

– mean-field algorithms (Opper and Winther)

– variational approximation (Gibbs and MacKay)

• these methods are not discussed here due to lengthy
details: see references on the course webpage
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• to demonstrate the feasibility of solving classification
problems using GP’s, the naive mean-field algorithm
of Opper and Winther is applied to certain datasets

• the mean-field approximation assumes that ũ is
Normally distributed, given the training data

• the algorithm is an iterative method for finding
coefficients αi that appear as linear weights in the
solution (similar to SVM)

• demo: opper2.R
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LECTURE 13: 25.4.2007

MAKING DECISIONS
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Decision Theory

• so far we have concentrated on computing a
posterior over the unknown quantity θ

• the distribution correctly describes what is known
about θ, as long as we believe our model

• but the distribution must be put to use: there is no
reason to compute it otherwise

• a general way of quantifying the use of posterior is
decision making
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• implicit decisions are made even when computing
the posterior and/or specifying the model

• otherwise, one should e.g. use infinitely many input
variables and keep simulating the posterior
indefinitely

• decisions: simplify model, stop simulation

• reasons: too many input variables cost, computation
costs
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• example: crossing a river

• you estimate that an old bridge fails with probability
0.01 if you try to cross it

• using a new bridge is possible, but takes more time

• what information do you need to make a decision?
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• knowing the failure probability is not enough

• if failing bridge means certain death, you probably
decide to use the new bridge

• but if failure means falling a meter or two into water,
your decision may be different

• probabilities are the same in both cases
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• in general, we need to express the “value” of an
outcome following a decision

• in the bridge example, we need

fail not fail

old u1 u2

new u3 u4

• lets denote this as a function U(a, θ) where
a ∈ {old,new} and θ ∈ {fail, not fail}
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• the choice a ∈ {a1, . . . , ak} denotes the decision

• θ denotes the uncertain outcome

• if U has monetary value, then it is called payoff

• later, we use a nonlinear function of money called
utility
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Decision Criteria

• many heuristic criteria have been proposed

• easy to demonstate nonoptimality by
counterexamples

• nonstochastic criteria ignore the posterior

• stochastic criteria use the information in the posterior
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• examples of nonstochastic criteria:

• maximin:
argmaxa min

θ
U(a, θ)

• maximax:
argmaxa max

θ
U(a, θ)

• minimax regret:

argmina

[
max
ai 6=a

max
θ

(U(ai, θ)−U(a, θ))
]
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• stochastic criteria use the probability distribution
over the outcomes

• some examples:

• modal outcome: choose the highest payoff of the most
probable outcome

• expected value/payoff: choose the highest expected
payoff
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• including the posterior of the outcome should
improve the decisions

• but there are several different stochastic criteria

• only one of them can be correct

• counterexamples suggest some problems with modal
outcome and expected payoff
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• consider following decisions, outcomes, and payoffs:

θ1 θ2 θ3

p(θ|y) 0.25 0.3 0.45

a1 500 500 200

a2 100 100 600

• modal outcome: mode is θ3, and the
payoff-maximizing decision is a2
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• modal outcome is essentially point estimation

• therefore it suffers from most point estimation
problems

• for example, consider combining θ1 and θ2

• now the combined outcome is the mode and the
decision a1 has the highest payoff
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• expected payoff is a special case of the optimal
decision rule, but is not generally optimal

• consider the decision between receiving 1000 €, or
flipping a coin and either receiving 1.1 M€ or having
to pay 1 M€

• the first choice has a smaller expected value

• but you would probably choose it anyway
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Utility

• utility fixes the expected value criterion so that it
becomes optimal

• given a few axioms, there exists a numerical measure
called utility:

– the optimal decision is one that maximizes
expected utility

– utility is subjective: different decision-makers can
have different utilities

– generally a nonlinear function U(C) of monetary
payoff C

501



• U(C) can be found using certainty equivalents

• example: cointoss with payoffs 0 and 1 EUR

• certainty equivalent is the maximum amount C you
are willing to pay for the bet

• then utility U(C) = 0.5U(0) + 0.5U(1)

• by a series of such bets, one can approximate the
function U(C)
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• an optimal decision out of a finite set of choices
a1, . . . , ak is the one that maximizes expected utility

• denote the utility of decision ai given the outcome θ

by U(ai, θ)

• the expected utility for choice ai is

E(U(ai, θ)) =
∫

U(ai, θ)p(θ|y)dθ

• in practice, one may want to define the monetary
payoff C(ai, θ) and then use U(C(ai, θ))
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• important points:

– optimal decisions require subjective probabilities and
subjective utility

– given certain axioms, it is optimal to maximize
expected utility

– approximate utility obtained by certainty equivalents
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• bridge example, failing probability is 0.01:

fail not fail EU

p(θ|y) 0.01 0.99

old −10 10 9.8

new 9 9 9

• what if failing is less pleasant?

fail not fail EU

p(θ|y) 0.01 0.99

old −100 10 8.9

new 9 9 9
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• maximizing expected utility is optimal in theory

• but decision theory can be difficult to apply

• sequential decisions (decisions depend on earlier
decisions) are computationally very heavy

• a corresponding decision tree explodes in size as a
function of number of decisions (e.g. playing chess)
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• small enough decision trees can be solved

• a decision tree alternates between decision and chance
nodes

• decisions are made at decision nodes, leading to
chance nodes

• chance node has random outcomes leading to
another decision node
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• example: first choose from a1, a2, a3

• choice ai is followed by an outcome bi1 or bi2

• outcome bij follows a choice of cij1 or cij2

• choice cijk leads to terminal outcomes dijk1, dijk2

• assume that the utilities of terminal outcomes are
known
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• how to make the decision D1? We don’t know the
utilities of C1, C2, C3

• the solution requires dynamic programming

• start by computing the expected utility on lowest
chance nodes (e.g. C4)

• use terminal outcomes to do this
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• using expected utilities such as E(U(C4)), we can
make optimal decisions at nodes (D2, D3)

• replace D2, D3 by the maximum expected utility of
the lowest chance nodes

• continue by computing the EU of C1, C2, C3

• this allows us to make the decision D1 optimally
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Model Selection

• not needed in principle, since the only correct model
p(θ, D) is defined by the subjective prior uncertainty

• one cannot have several conflicting prior
uncertainties, so a unique model is obtained in theory

• but there are various reasons why selecting a model
from a set of candidates may be useful in practice

– if θ is point estimated, then risk of overfitting may
be reduced by model selection

– a simple model is required for practical reasons
(computational and data collection costs)

511



• not using correct p(θ, D) is a compromise between

– cost of obtaining the wrong posterior uncertainty
and predictive distribution

– benefits such as less computation and smaller
data collection costs

• probabilities cannot tell you how much computation
costs, or how much having the wrong posterior costs

• decision theory solves the problem in principle
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• most model selection heuristics use only probabilities

• examples: MDL, MML, AIC, Evidence framework

• they generally disagree on the same data and model!

• most can be thought as giving a “penalty” to
complex models
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• model selection should in principle be treated as a
decision

• therefore one should pick the model which
maximizes expected utility

• this is easier said than done, but in some applications
costs are important enough to warrant this approach

• the key element is the utility corresponding to each
candidate model
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• the utility depends on the problem, but may include
for example

– data collection costs: simpler models might use only
part of the data, so the unused data does not have to
be collected at all

– computational costs: solving a complicated model is
generally costly

– model accuracy: how well the model performs in
making predictions
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• a full-flegded decision approach is rarely done
explicitly

• but most of the above costs are implicitly considered
in practice

• nobody uses a model that:

. . . takes forever to solve

. . . requires data that is much too expensive

. . . could be made much more accurate with little
extra cost
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• example: assessing quality of healthcare (Fouskakis
and Draper, 2005)

• hospitals are modeled as processes which map input
variables (results of clinical tests) to an outcome
(death within 30 days)

• collecting variables is expensive (36 variables initially
considered)

• utility-based model selection was used to select a
subset of input variables
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• this requires choosing the utility of each subset

• it includes a negative term, which can be obtained
from actual costs of performing the necessary clinical
tests

• the utility of the model accuracy was obtained by
testing the performance, and eliciting a monetary
payoff from health experts for the different outcomes
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Posterior Approximation

• also a decision (which wrong posterior to compute?)

• often the decision to use the correct posterior has a
very small utility (e.g. high computational cost)

• approximations are a compromise between low
computational costs and wrong results

• if the cost of wrong results can be high, utilities
should be considered in posterior approximation
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• example: point estimation, decide which θ0

approximates the posterior p(θ|y)

• the expected utility is

E(U(θ0, θ)) =
∫

U(θ0, θ)p(θ|y)dθ

• certain utilities lead to familiar point estimates
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• for example, U(θ0, θ) = −(θ0 − θ)2 leads to
least-squares estimate

• U = δ(θ0 − θ) leads to the MAP estimate, as before

• in this sense choosing a point estimate means making
a decision

• note that none of the point estimates are generally
better than others: they arise as a function of U(θ0, θ)
and the posterior
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• in general, choose q(θ) to approximate p(θ|y)

• a utility U(q(θ), θ) is called

– proper if E(U(q, θ)) is maximized by q = p(θ|y)

– local if U(q(θ), θi) = ui(q(θi)) (utility at θi depends
only on q(θi))

• Theorem (see Bernardo’s book for details): a
continuosly differentiable, local, and proper utility
(for distributions) is

U(q, θ) = A log q + B(θ)
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• what is lost in utility by choosing q instead of p?

• if the utility is local, proper, and smooth, then we lose

E[U(p, θ)−U(q, θ)] =

= E[A log p + B(θ)− A log q− B(θ)] =

=
∫

[A(log p− log q)] p(θ|y)dθ =

= A
∫

p log
p
q

dθ = AD(p‖q)

• this is Kullback-Leibler divergence, up to
multiplication by A
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• example: true/false statements in T-61.5040 exam

• a set of statements is given, and your answer to each
is a probability q(TRUE)

• your subjective probability p(TRUE) can be different!

• you will get 1− 4(1− q)2 points if the statement is
true, and 1− 4q2 points if it is false
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• some properties:

– to maximize expected number of points, choose q = p

– answering q = 0.5 gives zero points (as does not
answering at all)

– answering q ∈ {0, 1} gives 1 or −3 points

– guessing q ∈ {0, 1} gives on average −1 points
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