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Solutions to exercise 6, 23.2.2007

Problem 1.

The data vectors y = yi,...,y, are independent and identically distributed. The distri-
bution is p(y;|0, V) = N(y;]0,V), where V is known. The unknown mean 6 is a vector and
it has a prior distribution p() = N (6|6, Vp). The posterior distribution p(fly, V) is
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The posterior p(f|y, V) is seen to be a normal distribution, as we expect the product of

normal distributions to be. But how do we extract the parameters of the distribution?
Let’s recall the formula for the pdf of a multivariate normal distribution

NOI,S) = S| exp(—5(0 — p)"S 70 — p)

In N (6], 5)

12 = (O0—pw)'S™HO—p)+ K, =07S710 - 20" i+ K.

We may thus extract the parameters by writing the exponent as polynomial of the variable
6. S~1 is directly the coefficient of the second order term and p is obtained from the first
order term coefficient by multiplying with —S/2.

Let’s proceed:
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From here we get the parameters of the posterior p(dy, V) = N(06,,V,) as
Vo=V 15!
and

Op = VoV g+ Vi ).
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Now we have solved the problem. However, some insight to the problem can be gained by
considering an alternative solution method. The solution is based on the fact that both
prior and posterior distributions are same type of distributions, just the parameter values
differ.

Thus we may obtain the solution sequentially by finding out the posterior parameters
after one observation and then using these parameters as the prior parameters for the
second observation. Omitting the similar algebraic manipulation, the posterior precision
after one observation is
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sum of prior and data precisions. After the second observations, the precision is again the

sum of prior precision (which is now Vp’l) and data precision. When this is repeated n

times, the posterior precision becomes VO_1 +nVL

The mean of the posterior p(f|y, V') after one observation y; is
O = (Vo + V1) (V0o + V) 2)

where 6, is the prior mean of §. For the next observation y, we insert 6, and V;;l in place
of 6y and V! and obtain

9p = (Vbﬁl + 2V71)71 (%7190 + V’l(yl + yz)) .
Repeating the above steps, we get

0,= (Vg +nv ) <V01€0 +VTY y,) .
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Some useful formulas for this problem are found in
http://www.cs.toronto.edu/ roweis /notes/gaussid.pdf

Problem 2.

We calculate the posterior mean and variance using the Formulas (1) and (2) in Problem
1. We have only a single scalar observation y, and thus we may replace the covariance
matrix V with the simple variance 0. Then
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Thus the posterior precision is the sum of prior and data precisions. Also,

0626'0 +o0 %y

o2+ 0y

0 =

p

This gives the posterior mean as a weighted average of the prior mean 6y and the obser-
vation y.



We now proceed to write the posterior mean as 6, = 6y + (y — 0y)C.
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Thus the “step size” C' = —z,,zif,, .
0

If the prior variance o2 is much smaller than the data variance o2, the step size C is close
to zero and the posterior mean 6, is close to the prior mean 6.
On the other hand, if 02 >> o2, the step size C is close to 1 and the posterior mean is

close to the observation y.

Problem 3.

i) y is Normal so
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Then the posterior is proportional to
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ii) By writing the posterior as
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we can see that now @ — a +1/2 and b — b+ 3(y — p)?. This is an inverse gamma
distribution, and the parameter a is its shape and b its scale. An inverse gamma distribution
with parameters a and b has mean b/(a — 1) and variance v*/(a — 1)*(a — 2).

Increasing a decreases the mean and variance, and increasing b increases the mean and
variance. For example, if we keep observing y = pu, then b does not increase but a does.
This makes the posterior mean and variance converge to zero, as they should.

The result of this problem shows that inverse gamma distribution is a conjugate distribu-
tion for the Normal model with unknown variance and known mean.

Problem 4.
i) N(yl0,0%) = \/ﬁ CXP(—Z}?(Z/ —0)?)

Then logp(y|0) = C — 55 (y — 6)* and Zlogp(y|0) = (0 — y)/o> Fisher information is
the expectation

E[(0 —y)*/o"] =072
since E[(6 —y)?] = E[(y — 0)?] is the variance of y given 6. Then the prior p(d) o 1/I(0) =
o~! which implies that the prior is constant. This cannot be normalized, so the value of
o is irrelevant.

i) N(ylu, 0%) = = exp(—55 (y — 1)*)
The logarithm is

log p(y[0) = — log V276 — Qim(y - n)?
and its derivative is
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Expectation of the square is
B2 407y —p)* — 207 (y — p)?] =072+ 3072 — 20749 = 202

The expectation E[(y — p)%] is the 4th central moment and equals 3¢* for a Normal
distribution. This gives the Jeffreys’ prior

p(6) x V26-2 = /2671
which again cannot be normalized.
Additional information: How does one compute the central moments?

can be obtained from the cumulant generating function
ex(t) = log E(e™)
by evaluating the derivatives of various orders at ¢ = 0. Using power series expansions for
e* and log(1 + ) we get
ex(t) = (BEX) + E((tX)?/2) +...) —1/20% + 1/30)% — ...
where ()* denotes (E(tX)+E((tX)2/2) +...)k. Collect the terms with the same multiplier
t* to obtain
ex(t) = tB(X) + 2(1/2E(X?) — 1/2(E(X))?) + ...

Notice that

¢y (0) = B(X —p) =0

& (0) = B((X — p)?)

& (0) = B((X — n)*)
For higher derivatives, the central moments are not directly obtained. But it holds that

eY(0) = B((X = )") =3 x B((X — n)?)



