
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiSolutions to exerise 11, 13.4.2007Problem 1.i) We use the same notation as in the leture notes: the observed measurement values aredenoted by by yobs, the missing values by ymis, and y = (yobs, ymis). We also have a setof indiators I = {Ii} where Ii = 0 if the measurement yi is missing, and 1 otherwise.Parameters φ ditate the missingness.We are interested in the posterior distribution of the weight θ of our objet. This an bewritten as p(θ|yobs, I) = p(yobs, I|θ)p(θ)/p(yobs, I). For a �at prior p(θ) this is proportionalto the likelihood

p(yobs, I|θ) =

∫

p(yobs, ymis, I|θ)dymis (1)

=

∫

p(y, I|θ)dymis (2)

=

∫

p(I|y, θ)p(y|θ)dymis (3)

= p(yobs|θ) ∫

p(I|y, θ)p(ymis|θ)dymis (4)We want to apply to this the assumption p(I|y, φ) = p(I|yobs, φ). In order to do this weintrodue an additional assumption p(φ|θ) = p(φ) whih guarantees p(φ|y) = p(φ) (sine

p(y|φ, θ) = p(y|θ)). Combined with the model assumption p(y|θ, φ) = p(y|θ) we also have

p(φ|y, θ) = p(φ). Then

p(I|y, θ) =

∫

p(I, φ|y, θ)dφ =

∫

p(I|φ, y)p(φ|y, θ)dφ =

∫

p(I|φ, yobs)p(φ)dφ = p(I|yobs).Here we used p(I|y, φ, θ) = p(I|y, φ).Plugging the result into (4) gives

p(yobs, I|θ) = p(yobs|θ)p(I|yobs) ∫

p(ymis|θ)dymis
︸ ︷︷ ︸

=1

.The only part that depends on θ is p(yobs|θ) and thus
p(θ|yobs, I) ∝ p(yobs|θ) ∝ p(θ|yobs)whih leads to

p(θ|yobs, I) = p(θ|yobs) = N(θ|ȳ,
1

91
),1

where ȳ denotes the mean of the observed values.As we saw, in this MAR system (missing at random, revealed by the given assumption
p(I|y, φ) = p(I|yobs, φ)) the additional assumption p(θ, φ) = p(θ)p(φ) leads to ignorability,i.e. p(θ|yobs, I) = p(θ|yobs). In the letures this was seen to be the ase in general. Had wenot assumed p(θ, φ) = p(θ)p(φ), we wouldn't have been able to obtain a simple expressionfor the likelihood.ii) If the value yi > 100, then the orresponding indiator Ii = 0. To simplify alulations,we make the missingness mehanism deterministi by also assuming that when yi ≤ 100,
Ii = 1. This implies that the missingness distribution p(I|y, φ) is not MAR, OAR (observedat random) nor MCAR (missing ompletely at random). The deterministi dependeneof I on the data y makes it straightforward to alulate the likelihood

p(yobs, I|θ) =

∫

p(y|θ)p(I|y)dymis (5)

=

∫

p(yobs|θ)p(ymis|θ) ∏

iall p(Ii|yi)dymis (6)

= p(yobs|θ) ∏

imis ∫ p(yi|θ)p(Ii|yi)dyi (7)

= p(yobs|θ) ∏

imis ∫ ∞

100

p(yi|θ)dyi (8)sine all the likelihoods p(Ii|yi) are either one or zero. In (6) all the likelihoods orres-ponding to observed values i equal one as these values were observed in the �rst plae,eliminating the terms from the produt.The missing value likelihoods are zero in some part of the integrated range and oneelsewhere. In (7) we are evaluating the likelihood of the atual values of I if the missingdata values were known. In the I that we have atually observed, all the omponentsorresponding to the missing data equal zero, so we need to onsider only p(Ii = 0|yi). Ifthe missing data yi was below 100, the likelihood of Ii being zero is zero. But if it is morethan 100, the likelihood is unity. Thus the likelihood term uts o� from the integrationrange areas where any yi is below 100. In the left over area the likelihood is one anddisappears from the produt.In the produt of integrals, eah term is the probability mass ontained in a Normaldistribution N(y|θ, 1) in the interval [100,∞). The result is di�erent from that in the parti) due to the missing data not being MAR.Again, the posterior is proportional to the likelihood:

p(θ|yobs, I) ∝ p(yobs, I|θ) =

∫

p(yobs, I|θ, φ)p(φ|θ)dφ = p(yobs|θ) ∏

imis ∫ ∞

100

p(yi|θ)dyi.
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iii) The data an be thought to be generated i.i.d. as follows:- take a weight y from N(y|θ, 1)- see if it is over 100 kg- if it is, disard it- otherwise report it- repeat until we get 91 weights.This time we don't have any information on how many weights were not reported. The-refore we have less information than in the part ii). We an think of eah observed datapoint as having been generated from a Normal distribution whih is trunated at y = 100.This must be normalized, sine its integral is ∫
100

−∞
N(y|θ, 1)dy 6= 1. So we get

p(yobs|θ) =
∏

iobs p(yi|θ) =
∏

iobs [

N(yi|θ, 1)/

∫
100

−∞

N(y|θ, 1)dy

]

.This likelihood grows without bound as θ grows. That is, if we use a �at prior we shoulddedue from our measurements that the objet we're weighing is likely to be in�nitelyheavy.Problem 2.i) MCAR, sine p(I|y, φ) = p(I|φ). MCAR is ignorable if φ is independent of θ.ii) We assume that the gender is observed in all the ases even in the alohol usage remainsunknown, i.e. no gender data is missing. We denote yi = (ai, xi) The mehanism is MAR,sine p(I|y, φ) = p(I|yobs, φ): the missingness depends on the gender, whih is alwaysobserved. It is not true that p(I|y, φ) = p(I|φ) and thereby the mehanism is not MCAR.The mehanism is ignorable if p(φ|θ) =
∫

p(φ, x|θ)dx equals p(φ). Sine φ is determinedby the gender, it holds that p(φ|x, θ) = p(φ|x). Using this on the integrand results in

∫

p(φ|x, θ)p(x|θ)dx =

∫

p(φ|x)p(x|θ)dxIf x and θ are independent, this redues to

∫

p(φ|x)p(x)dx =

∫

p(φ, x)dx = p(φ).Thus the mehanism is ignorable if x and θ are independent.iii) MCAR, sine p(I|y, φ) = p(I|φ). This time ignorability does not hold sine φ = θ.iv) Sine p(I|y, φ) annot be simpli�ed, the mehanism is non-ignorable (also not MAR,MCAR, or OAR). The data yi de�nes the probability for missingness and therefore no
yi's an be removed from p(I|y, φ).
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Problem 3.We need onditional marginal posteriors of the unknown quantities:
p(µ|y, Σ, I, φ), p(Σ|µ, y, I, φ), p(ymis|µ, Σ, I, yobs, φ)The �rst distribution is

p(µ|y, Σ, I, φ) ∝ p(y, I|µ, Σ, φ)p(µ|Σ, φ) = p(y|µ, Σ)p(I|y, φ)p(µ|Σ)

∝ p(y|µ, Σ)p(µ|Σ) = p(µ, y|Σ) = p(µ|y, Σ)p(y|Σ)

∝ p(µ|y, Σ)Here we assumed the independene of θ = (µ, Σ) and φ. Analogous derivation gives theseond distribution as

p(Σ|µ, y, I, φ) = p(Σ|µ, y)Therefore the two �rst distributions are just like in the non-missing situation, so they areknown by the assumption given in the problem.It remains to simulate missing data, given parameters µ, Σ. The distribution

p(ymis|µ, Σ, I, yobs, φ) =
p(y, I|µ, Σ, φ)

p(I, yobs|µ, Σ, φ)
=

p(y|µ, Σ, I)p(I|y, φ)

p(I, yobs|µ, Σ, φ)By the given assumption, p(I|y, φ) = p(I|yobs, φ). (This does not generally follow fromthe ignorability.) Then the above distribution has only one term ontaining ymis and it is

p(y|µ, Σ, I). Therefore
p(ymis|µ, Σ, I, yobs, φ) ∝ p(y|µ, Σ, I) = p(ymis|µ, Σ, I, yobs)p(yobs|µ, Σ, I) ∝ p(ymis|µ, Σ, I, yobs).The Gibbs sampling thus requires us to simulate the last distribution, whih is quitestraightforward.Sine the parameters are known, eah y(i) is onditionally independent from eah other.For eah i we need to simulate the missing omponents ymis(i) of the normally distributedvetor yi given the observed omponents yobs(i) and the parameters of the distribution.Let's �gure out how to do this.From now on we onsider one observation i at a time. For brevity, we write ymis(i) = uand yobs(i) = v and drop the onditioning by µ, Σ, I from the notation. We also writeVar(u) = Σu, Var(v) = Σv, Cov(u, v) = Σuv, Cov(v, u) = ΣvuThese parts of Σ are easy to �nd from the instantaneous Σ, given the missingness india-tors I.Then p(u, v) = N((u, v)|µ, Σ) and we want to �nd p(u|v). We know that p(u|v) is Normalso ompute its mean and ovariane. From the iteration formulas given as hint we getE(u|v) = E(u) + Cov(v, u)Var(v)−1(v − E(v)) = µu + ΣvuΣ−1

v
(v − µv)Var(u|v) = Var(u) − Cov(v, u)Var(v)−1Cov(u, v) = Σu − ΣvuΣ

−1

v
ΣuvNow for eah y(i), the simulation of the missing omponents amounts to drawing a vetorfrom the Normal distribution N(E(u|v),Var(u|v)).4


