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ise 11, 13.4.2007Problem 1.i) We use the same notation as in the le
ture notes: the observed measurement values aredenoted by by yobs, the missing values by ymis, and y = (yobs, ymis). We also have a setof indi
ators I = {Ii} where Ii = 0 if the measurement yi is missing, and 1 otherwise.Parameters φ di
tate the missingness.We are interested in the posterior distribution of the weight θ of our obje
t. This 
an bewritten as p(θ|yobs, I) = p(yobs, I|θ)p(θ)/p(yobs, I). For a �at prior p(θ) this is proportionalto the likelihood

p(yobs, I|θ) =

∫

p(yobs, ymis, I|θ)dymis (1)

=

∫

p(y, I|θ)dymis (2)

=

∫

p(I|y, θ)p(y|θ)dymis (3)

= p(yobs|θ) ∫

p(I|y, θ)p(ymis|θ)dymis (4)We want to apply to this the assumption p(I|y, φ) = p(I|yobs, φ). In order to do this weintrodu
e an additional assumption p(φ|θ) = p(φ) whi
h guarantees p(φ|y) = p(φ) (sin
e

p(y|φ, θ) = p(y|θ)). Combined with the model assumption p(y|θ, φ) = p(y|θ) we also have

p(φ|y, θ) = p(φ). Then

p(I|y, θ) =

∫

p(I, φ|y, θ)dφ =

∫

p(I|φ, y)p(φ|y, θ)dφ =

∫

p(I|φ, yobs)p(φ)dφ = p(I|yobs).Here we used p(I|y, φ, θ) = p(I|y, φ).Plugging the result into (4) gives

p(yobs, I|θ) = p(yobs|θ)p(I|yobs) ∫

p(ymis|θ)dymis
︸ ︷︷ ︸

=1

.The only part that depends on θ is p(yobs|θ) and thus
p(θ|yobs, I) ∝ p(yobs|θ) ∝ p(θ|yobs)whi
h leads to

p(θ|yobs, I) = p(θ|yobs) = N(θ|ȳ,
1

91
),1

where ȳ denotes the mean of the observed values.As we saw, in this MAR system (missing at random, revealed by the given assumption
p(I|y, φ) = p(I|yobs, φ)) the additional assumption p(θ, φ) = p(θ)p(φ) leads to ignorability,i.e. p(θ|yobs, I) = p(θ|yobs). In the le
tures this was seen to be the 
ase in general. Had wenot assumed p(θ, φ) = p(θ)p(φ), we wouldn't have been able to obtain a simple expressionfor the likelihood.ii) If the value yi > 100, then the 
orresponding indi
ator Ii = 0. To simplify 
al
ulations,we make the missingness me
hanism deterministi
 by also assuming that when yi ≤ 100,
Ii = 1. This implies that the missingness distribution p(I|y, φ) is not MAR, OAR (observedat random) nor MCAR (missing 
ompletely at random). The deterministi
 dependen
eof I on the data y makes it straightforward to 
al
ulate the likelihood

p(yobs, I|θ) =

∫

p(y|θ)p(I|y)dymis (5)

=

∫

p(yobs|θ)p(ymis|θ) ∏

iall p(Ii|yi)dymis (6)

= p(yobs|θ) ∏

imis ∫ p(yi|θ)p(Ii|yi)dyi (7)

= p(yobs|θ) ∏

imis ∫ ∞

100

p(yi|θ)dyi (8)sin
e all the likelihoods p(Ii|yi) are either one or zero. In (6) all the likelihoods 
orres-ponding to observed values i equal one as these values were observed in the �rst pla
e,eliminating the terms from the produ
t.The missing value likelihoods are zero in some part of the integrated range and oneelsewhere. In (7) we are evaluating the likelihood of the a
tual values of I if the missingdata values were known. In the I that we have a
tually observed, all the 
omponents
orresponding to the missing data equal zero, so we need to 
onsider only p(Ii = 0|yi). Ifthe missing data yi was below 100, the likelihood of Ii being zero is zero. But if it is morethan 100, the likelihood is unity. Thus the likelihood term 
uts o� from the integrationrange areas where any yi is below 100. In the left over area the likelihood is one anddisappears from the produ
t.In the produ
t of integrals, ea
h term is the probability mass 
ontained in a Normaldistribution N(y|θ, 1) in the interval [100,∞). The result is di�erent from that in the parti) due to the missing data not being MAR.Again, the posterior is proportional to the likelihood:

p(θ|yobs, I) ∝ p(yobs, I|θ) =

∫

p(yobs, I|θ, φ)p(φ|θ)dφ = p(yobs|θ) ∏

imis ∫ ∞

100

p(yi|θ)dyi.

2



iii) The data 
an be thought to be generated i.i.d. as follows:- take a weight y from N(y|θ, 1)- see if it is over 100 kg- if it is, dis
ard it- otherwise report it- repeat until we get 91 weights.This time we don't have any information on how many weights were not reported. The-refore we have less information than in the part ii). We 
an think of ea
h observed datapoint as having been generated from a Normal distribution whi
h is trun
ated at y = 100.This must be normalized, sin
e its integral is ∫
100

−∞
N(y|θ, 1)dy 6= 1. So we get

p(yobs|θ) =
∏

iobs p(yi|θ) =
∏

iobs [

N(yi|θ, 1)/

∫
100

−∞

N(y|θ, 1)dy

]

.This likelihood grows without bound as θ grows. That is, if we use a �at prior we shoulddedu
e from our measurements that the obje
t we're weighing is likely to be in�nitelyheavy.Problem 2.i) MCAR, sin
e p(I|y, φ) = p(I|φ). MCAR is ignorable if φ is independent of θ.ii) We assume that the gender is observed in all the 
ases even in the al
ohol usage remainsunknown, i.e. no gender data is missing. We denote yi = (ai, xi) The me
hanism is MAR,sin
e p(I|y, φ) = p(I|yobs, φ): the missingness depends on the gender, whi
h is alwaysobserved. It is not true that p(I|y, φ) = p(I|φ) and thereby the me
hanism is not MCAR.The me
hanism is ignorable if p(φ|θ) =
∫

p(φ, x|θ)dx equals p(φ). Sin
e φ is determinedby the gender, it holds that p(φ|x, θ) = p(φ|x). Using this on the integrand results in

∫

p(φ|x, θ)p(x|θ)dx =

∫

p(φ|x)p(x|θ)dxIf x and θ are independent, this redu
es to

∫

p(φ|x)p(x)dx =

∫

p(φ, x)dx = p(φ).Thus the me
hanism is ignorable if x and θ are independent.iii) MCAR, sin
e p(I|y, φ) = p(I|φ). This time ignorability does not hold sin
e φ = θ.iv) Sin
e p(I|y, φ) 
annot be simpli�ed, the me
hanism is non-ignorable (also not MAR,MCAR, or OAR). The data yi de�nes the probability for missingness and therefore no
yi's 
an be removed from p(I|y, φ).

3

Problem 3.We need 
onditional marginal posteriors of the unknown quantities:
p(µ|y, Σ, I, φ), p(Σ|µ, y, I, φ), p(ymis|µ, Σ, I, yobs, φ)The �rst distribution is

p(µ|y, Σ, I, φ) ∝ p(y, I|µ, Σ, φ)p(µ|Σ, φ) = p(y|µ, Σ)p(I|y, φ)p(µ|Σ)

∝ p(y|µ, Σ)p(µ|Σ) = p(µ, y|Σ) = p(µ|y, Σ)p(y|Σ)

∝ p(µ|y, Σ)Here we assumed the independen
e of θ = (µ, Σ) and φ. Analogous derivation gives these
ond distribution as

p(Σ|µ, y, I, φ) = p(Σ|µ, y)Therefore the two �rst distributions are just like in the non-missing situation, so they areknown by the assumption given in the problem.It remains to simulate missing data, given parameters µ, Σ. The distribution

p(ymis|µ, Σ, I, yobs, φ) =
p(y, I|µ, Σ, φ)

p(I, yobs|µ, Σ, φ)
=

p(y|µ, Σ, I)p(I|y, φ)

p(I, yobs|µ, Σ, φ)By the given assumption, p(I|y, φ) = p(I|yobs, φ). (This does not generally follow fromthe ignorability.) Then the above distribution has only one term 
ontaining ymis and it is

p(y|µ, Σ, I). Therefore
p(ymis|µ, Σ, I, yobs, φ) ∝ p(y|µ, Σ, I) = p(ymis|µ, Σ, I, yobs)p(yobs|µ, Σ, I) ∝ p(ymis|µ, Σ, I, yobs).The Gibbs sampling thus requires us to simulate the last distribution, whi
h is quitestraightforward.Sin
e the parameters are known, ea
h y(i) is 
onditionally independent from ea
h other.For ea
h i we need to simulate the missing 
omponents ymis(i) of the normally distributedve
tor yi given the observed 
omponents yobs(i) and the parameters of the distribution.Let's �gure out how to do this.From now on we 
onsider one observation i at a time. For brevity, we write ymis(i) = uand yobs(i) = v and drop the 
onditioning by µ, Σ, I from the notation. We also writeVar(u) = Σu, Var(v) = Σv, Cov(u, v) = Σuv, Cov(v, u) = ΣvuThese parts of Σ are easy to �nd from the instantaneous Σ, given the missingness indi
a-tors I.Then p(u, v) = N((u, v)|µ, Σ) and we want to �nd p(u|v). We know that p(u|v) is Normalso 
ompute its mean and 
ovarian
e. From the iteration formulas given as hint we getE(u|v) = E(u) + Cov(v, u)Var(v)−1(v − E(v)) = µu + ΣvuΣ−1

v
(v − µv)Var(u|v) = Var(u) − Cov(v, u)Var(v)−1Cov(u, v) = Σu − ΣvuΣ

−1

v
ΣuvNow for ea
h y(i), the simulation of the missing 
omponents amounts to drawing a ve
torfrom the Normal distribution N(E(u|v),Var(u|v)).4


