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Solutions to exercise 11, 13.4.2007

Problem 1.

i) We use the same notation as in the lecture notes: the observed measurement values are
denoted by by yobs, the missing values by ymis, and ¥y = (Yobs, Ymis). We also have a set
of indicators I = {I;} where [; = 0 if the measurement y; is missing, and 1 otherwise.
Parameters ¢ dictate the missingness.

We are interested in the posterior distribution of the weight 6 of our object. This can be
written as p(0]yobs, 1) = P(Yobss 110)p(0) /P (Yobs, 1) For a flat prior p(6) this is proportional
to the likelihood
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We want to apply to this the assumption p(Z]y, ®) = p(I|Yobs, ®). In order to do this we
introduce an additional assumption p(4|6) = p(¢) which guarantees p(¢|y) = p(¢) (since
p(y|d, 8) = p(y|#)). Combined with the model assumption p(y|6, ¢) = p(y|6) we also have
p(0ly,0) = p(¢). Then
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Here we used p(I]y, 6,6) = p(Ily, ).

Plugging the result into (4) gives
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The only part that depends on 0 is p(yons|0) and thus
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which leads to 1
P(01Yobs, 1) = p(0lyons) = N (017, ﬁ)’
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where g denotes the mean of the observed values.

As we saw, in this MAR system (missing at random, revealed by the given assumption
p(Ily, #) = p(I|Yobs, ¢)) the additional assumption p(é, ¢) = p(6)p(¢) leads to ignorability,
i.e. p(0|Yobs, I) = p(0|Yons)- In the lectures this was seen to be the case in general. Had we
not assumed p(6, ¢) = p(0)p(¢), we wouldn’t have been able to obtain a simple expression
for the likelihood.

ii) If the value y; > 100, then the corresponding indicator I; = 0. To simplify calculations,
we make the missingness mechanism deterministic by also assuming that when y; < 100,
I; = 1. This implies that the missingness distribution p(I]y, ¢) is not MAR, OAR (observed
at random) nor MCAR (missing completely at random). The deterministic dependence
of I on the data y makes it straightforward to calculate the likelihood
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since all the likelihoods p(I;]y;) are either one or zero. In (6) all the likelihoods corres-
ponding to observed values i equal one as these values were observed in the first place,
eliminating the terms from the product.

The missing value likelihoods are zero in some part of the integrated range and one
elsewhere. In (7) we are evaluating the likelihood of the actual values of I if the missing
data values were known. In the I that we have actually observed, all the components
corresponding to the missing data equal zero, so we need to consider only p(I; = 0]y;). If
the missing data y; was below 100, the likelihood of I; being zero is zero. But if it is more
than 100, the likelihood is unity. Thus the likelihood term cuts off from the integration
range areas where any y; is below 100. In the left over area the likelihood is one and
disappears from the product.

In the product of integrals, each term is the probability mass contained in a Normal
distribution N(y|6, 1) in the interval [100, 00). The result is different from that in the part
i) due to the missing data not being MAR.

Again, the posterior is proportional to the likelihood:
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iii) The data can be thought to be generated i.i.d. as follows:
- take a weight y from N(y|6, 1)

- see if it is over 100 kg

- if it is, discard it

- otherwise report it

- repeat until we get 91 weights.

This time we don’t have any information on how many weights were not reported. The-
refore we have less information than in the part ii). We can think of each observed data
point as having been generated from a Normal distribution which is truncated at y = 100.
This must be normalized, since its integral is szg N(yl|0,1)dy # 1. So we get
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This likelihood grows without bound as 6 grows. That is, if we use a flat prior we should
deduce from our measurements that the object we're weighing is likely to be infinitely
heavy.

Problem 2.

i) MCAR, since p(I|y, ¢) = p(I|¢). MCAR is ignorable if ¢ is independent of 6.

ii) We assume that the gender is observed in all the cases even in the alcohol usage remains
unknown, i.e. no gender data is missing. We denote y; = (a;, z;) The mechanism is MAR,
since p(Iy, ) = p(I|Yobs, #): the missingness depends on the gender, which is always
observed. Tt is not true that p(I|y, ¢) = p(I|¢) and thereby the mechanism is not MCAR.

The mechanism is ignorable if p(¢|0) = [ p(¢, z|0)dz equals p(¢). Since ¢ is determined
by the gender, it holds that p(¢|z,0) = p(¢|z). Using this on the integrand results in

/ (@], 0)p(z]6)dz = / p(6l2)p(x]8)dz

If x and 0 are independent, this reduces to

[ptelenris = [ pio.z)iz = o)
Thus the mechanism is ignorable if x and 6 are independent.
iii) MCAR, since p(I|y, ¢) = p(I|$). This time ignorability does not hold since ¢ = 6.

iv) Since p(I|y, ¢) cannot be simplified, the mechanism is non-ignorable (also not MAR,
MCAR, or OAR). The data y; defines the probability for missingness and therefore no
y;'s can be removed from p(I|y, ¢).

Problem 3.

We need conditional marginal posteriors of the unknown quantities:
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The first distribution is
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Here we assumed the independence of § = (u,¥) and ¢. Analogous derivation gives the
second distribution as

p(Zlpy. 1, ¢) = p(Elp,y)
Therefore the two first distributions are just like in the non-missing situation, so they are
known by the assumption given in the problem.

It remains to simulate missing data, given parameters p,>. The distribution
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By the given assumption, p(I|y, ) = p(I|yoss, ®). (This does not generally follow from
the ignorability.) Then the above distribution has only one term containing y,,,;s and it is
p(y|p, 3, I). Therefore
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The Gibbs sampling thus requires us to simulate the last distribution, which is quite
straightforward.

Since the parameters are known, each (i) is conditionally independent from each other.
For each ¢ we need to simulate the missing components ¥,,5(¢) of the normally distributed
vector y; given the observed components y,s(2) and the parameters of the distribution.
Let’s figure out how to do this.

From now on we consider one observation ¢ at a time. For brevity, we write y,,5(i) = u
and Yops(1) = v and drop the conditioning by p, 3, I from the notation. We also write

Var(u) = %, Var(v) = X, Cov(u,v) = By, Cov(v,u) =3,

These parts of ¥ are easy to find from the instantaneous ¥, given the missingness indica-
tors I.

Then p(u,v) = N((u,v)|p, X) and we want to find p(u|v). We know that p(u|v) is Normal
so compute its mean and covariance. From the iteration formulas given as hint we get
E(ulv) = E(u) + Cov(v,u)Var(v) (v — E()) = 1y + Zou Xy (v — pt0)
Var(ulv) = Var(u) — Cov(v, u) Var(v) "'Cov(u,v) = By — S35 S

Now for each y(¢), the simulation of the missing components amounts to drawing a vector
from the Normal distribution N(E(ulv), Var(u|v)).



