
T-61.5040 Oppivat mallit ja menetelmätT-61.5040 Learning Models and MethodsPajunen, ViitaniemiExerises 12, 20.4.2007Problem 1.The solution for Gaussian Proess regression was given in the letures in the form of aNormal preditive distribution for a point ỹ. Chek that the preditive mean and varianeare orret, using the following formulas for a joint normal distribution p(u, v):E(u|v) = E(u) + Cov(v, u)(Var(v))−1(v − E(v))Var(u|v) = Var(u) − Cov(v, u)(Var(v))−1Cov(u, v).What is the omputational omplexity of �nding the solution, as a funtion of n, the numberof training points? What is the extra ost of prediting another point? Assume that it isheap to evaluate the ovariane funtion.Problem 2.The ovariane funtion C(xi, xj) is the key element in a Gaussian Proess prior. In thisproblem we see examples of proesses of varying properties, whih are not always apparentfrom the ovariane funtion. Find the ovariane funtion of the following proesses:i) Brownian motion B(t), where B(0) = 0, inrements B(s) − B(t) with s > t are Normallydistributed random variables with distribution N(0, s − t). Disjoint inrements B(s) −B(t)and B(v) − B(w) are independent if s > t ≥ v > w. Find the ovariane funtion C(ti, tj).ii) Linear model yi = wTxi + ei where the i.i.d. noise ei is distributed as N(0, σ2). Inputs xiare d-dimensional vetors and the prior for w is p(w) = N(w|0, I). Find C(xi, xj).iii) A neural network f(x) = b+
∑

k vk exp(− 1

2σ2 ‖x−uk‖
2), where the network weights haveNormal priors p(u) = N(u|0, σ2

uI), p(v) = N(v|0, σ2
vI), p(b) = N(b|0, σ2

b ). The weights areindependent of eah other. For simpliity, assume that σ2
u is very large and σ2 = 1.Hint: use the assumption that the weights are independent to write the ovariane as afuntion of E

[

exp(− 1

2σ2 ‖xi − u‖2) exp(− 1

2σ2 ‖xj − u‖2)
]. The expetation is omputed over

p(u), whih you an assume to be onstant sine its variane is very large. Now you shouldbe able integrate u out by rearranging the exponent term. Note that the integral an beomputed only up to a proportionality onstant.



Problem 3.Using the notation of the letures, the distribution p(u|x̃, D) in GP lassi�ation is di�ultto formulate sine the training data D ontains only the inputs xi and orresponding lasslabels yi ∈ {−1, +1}. Various approximations an be used, and some of them require thatthe mode is omputed. Choose a linear lassi�er, so u = XT w with X = [x1, . . . , xn]. Usethe prior p(w|x̃, x) = p(w) = N(w|0, I) for the lassi�er w. Assume that the linear lassi�er
w is obtained as a linear ombination of inputs, i.e. w =

∑

i xiai = Xa. For the lass labeldistribution, use p(yi|ui) = (1 + exp(−2yiui))
−1i) Write the problem of �nding the mode of p(u|x̃, D) as a minimization problem wrt w.Hints:- �nd the prior p(u|x̃, x) = p(u|x) indued by p(w) by writing u = XT w and omputing

E[uuT ].- to replae u by w you need to use the representation w = Xa.ii) Compare the result with Soft Margin SVM, where the optimization is to minimize ‖w‖2 +
K

∑

i(1 − yi(w
T xi))+ where z+ = max(z, 0).Hint:- to solve this problem, examine what happens approximately in the ost funtions when

wTxi has a very large absolute value and has either the same or di�erent sign as the orretlass label yi.


