
T-61.5030 Advanced course in neural computing

Solutions for exercise 3

1. Let us denote d = [d1 d2 . . . dN ]T and y = [y1 y2 . . . yN ]T , where yi =
∑

wkFk(xi), and
w = [w1 w2 . . . wK ]T . If F is a matrix whose element on the ith row and kth column
contains the value Fk(xi), we can write y = Fw. The sum of squared errors can then be
written compactly as

E = (d− y)T (d − y) = (d − Fw)T (d− Fw) = dTd − 2wTFTd + wTFT Fw .

The gradient with respect to w vanishes at the minimum point. Solving for w then yields

∇
w
E = −2FT d + 2FT Fw = 0 ⇒ w = (FTF)−1FTd .

2. Averaging over K experts does not change the bias: for a given input x, we have
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where f(x) denotes the desired function value and T denotes the training set; the second
equality follows because the experts are identical, and thus have an identical expected
output, here denoted ET [F (x)].

The variance decreases by factor 1/K if the learning of different experts is independent
because variances of independent variables add up and multiplying with wk = 1/K de-
creases the variance by factor 1/K2. In more detail, we have:
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where vk(x) = Fk(x)−ET [Fk(x)]; with this notation, ET [v2
k(x)] is the variance of expert

k. If the learning of the different experts is independent, the vk are independent ran-
dom variables, which yields the fourth equality. The fifth follows because ET [vk(x)] =
ET [Fk(x)] − ET [Fk(x)] = 0, and because identical experts have identical variances, here
denoted ET [v2(x)].



3. In ensemble averaging the weights are fixed (see exercise problem 2). In Bayesian learning,
the networks are averaged over the posterior probabilities of the models. In Bayesian
learning the averaging is done over the probability distribution while in ensemble learning
it is done over the output. These are not equivalent in general, but in some cases they are
roughly same (see answer for problem 4.3 next week). Ensemble learning can therefore
be seen as an approximation to the Bayesian averaging.

4. Assume that Ni samples are needed to train expert Ei so that the resulting error rate
is ǫi < 0.5, i=1,2,3. Note that if we had ǫi > 0.5 we could simply switch each response
to obtain error rate 1 − ǫi < 0.5. Then N1 data samples are required to train the first
expert.

To train expert E2, we need N2 samples such that half of them are correctly classified by
E1 and half are misclassified. We must therefore run data by E1 until it has misclassified
N2/2 samples and correctly classified N2/2 samples. Since E1 has error rate ǫ1 < 1/2, this
requires max( N2

2ǫ1
, N2

2(1−ǫ1)
) = N2

2ǫ1
samples on average. (Note: this assumes the misclassified

samples are evenly distributed in the data. It would be more realistic to consider the
classifications as a stochastic process and compute how long it takes on average to produce
the required numbers of correctly and incorrectly classified samples. The answer that
would yield is
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which can be approximated numerically.)

To train expert E3, we need N3 samples for which the first two experts disagree. In a
binary classification problem the probability of disagreement is

p(E1 disagrees with E2) = p(E1 correct, E2 incorrect)+p(E1 incorrect, E2 correct) .

Assuming that the responses of E1 and E2 are independent, this reduces to

p(E1 disagrees with E2) = p(E1 correct)p(E2 incorrect)+p(E1 incorrect)p(E2 correct)

= (1 − ǫ1)ǫ2 + ǫ1(1 − ǫ2) = ǫ1 + ǫ2 − 2ǫ1ǫ2 .

From this we can compute the number of samples required to train E3 (assuming the
samples for which E1 and E2 disagree are evenly distributed).

If samples aren’t reused in training, the total number of samples required to train the
committee machine is
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If the experts are identical, this simplifies to
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.

Schapire (1990) proved the following bound for the error rate of the committee machine:

ǫcommittee ≤ g(ǫ) = 3ǫ2 − 2ǫ3 .

The graph of this bound is shown in Haykin, Fig. 7.3. Each value of the bound g(ǫ)
corresponds to a certain ǫ, from which one can calculate the required value of Ncommittee.


