T-61.5030 Advanced course in neural computing

Exercise 6, Nov. 2, 2006

1. Two independent sources s_1 and s_2 , both uniformly distributed on [-1, 1], are mixed either with $\mathbf{x} = \mathbf{A_1s}$ or $\mathbf{x} = \mathbf{A_2s}$, where

$$\mathbf{A_1} = \begin{pmatrix} 2 & 1 \\ 2 & -1 \end{pmatrix}$$
 and $\mathbf{A_2} = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} / \sqrt{2}.$

- (a) Draw images about how the linear mappings A_1 and A_2 change the coordinate system.
- (b) Compute the covariance matrices of the mixtures.
- (c) Whiten the mixtures with PCA and visualize the new coordinate systems.
- (d) Consider an orthogonal rotation matrix

$$\mathbf{W} = \left(\begin{array}{cc} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{array}\right),\,$$

where θ is the angle of rotation. Let u_1 and u_2 be the components of the whitened mixtures after the rotation **W**. Check that for any rotation angle θ , the components u_1 and u_2 remain uncorrelated and have constant variance equal to 1. So, decorrelation or variance maximization will not help in finding the correct rotation **W**.

- (e) Plot the kurtosis of u_1 and u_2 as functions of θ . How can the kurtosis be used for finding the rotation **W**.
- (f) Can some other measures be used for finding the rotation?
- 2. Show that

$$I(X;Y) = D_{p(X,Y)||p(X)p(Y)},$$

that is, mutual information is equal to the Kullback-Leibler divergence of the joint distribution from the "corresponding" factored distribution.

3. Show that for a transformation $\mathbf{y} = \mathbf{W}\mathbf{x}$ there exists a simple connection between mutual information I and negentropy J assuming that the Y_i are uncorrelated and have unit variance:

$$I(Y_1,...,Y_n) = C - \sum_{i=1}^n J(Y_i);,$$

where C is a constant. (Notation: y_i is the value of the random variable Y_i .) What does this connection imply for ICA computation?