1. Prove that PCA minimizes $E_{x,y}[d(x,y)^2 - d(x',y')^2]$ where d is the Euclidean distance function, the x and y are original data samples, and x' and y' are data samples after PCA projection.

2. For the matched filter considered in Haykin, Example 8.2, the eigenvalue λ_1 and associated eigenvector q_1 are defined by

$$\lambda_1 = 1 + \sigma^2$$
$$q_1 = s$$

Show that these parameters satisfy the basic relation

$$Rq_1 = \lambda_1 q_1$$

where R is the correlation matrix of the input vector X.

3. Consider the maximum eigenfilter where the weight vector $w(n)$ evolves in accordance with Haykin, Eq. (8.46). Show that the variance of the filter output approaches λ_{max} as n approaches infinity, where λ_{max} is the largest eigenvalue of the correlation matrix of the input vector.

4. Show that in Kernel PCA, the normalization of eigenvector \tilde{q} of the correlation matrix \tilde{R} is equivalent to the requirement that Haykin, Eq. (8.153) be satisfied.