
3.4 Linear Least-Squares Filter

• Two characteristics of linear least-squares filter:

1. The filter is built around a single linear neuron.

2. The cost function is the sum of error squares, as defined in the
Gauss-Newton method.

• The error of the input vector x(i) at time n is (section 3.2)

e(i) = d(i)− xT (i)w(n)

• Collecting these equations into matrix-vector form yields

e(n) = d(n)−X(n)w(n)

where d(n) is the n× 1 desired response vector:

d(n) = [d(1), d(2), . . . , d(n)]T

and X(n) is the n×m data matrix:

X(n) = [x(1),x(2), . . . ,x(n)]T

1

• The Jacobian of the error vector e(n) with respect to the weight vector
w(n) is simply

J(n) = −X(n)

• Substituting this into the Gauss-Newton iteration formula yields the
linear least-squares filter

w(n + 1) = [XT (n)X(n)]−1XT (n)d(n) = X+(n)d(n)

where
X+(n) = [XT (n)X(n)]−1XT (n)

is the pseudoinverse of X(n).

• The n×m matrix X(n) has usually not a standard inverse.

2

Wiener Filter

• Assume now that the input vectors x(i) and the desired responses d(i)
are stationary.

• This means that their statistical properties do not depend on the time
instant i.

• Then expectations (ensemble averages) can be computed from long-
term sample or time averages.

• In particular, the following second-order statistics are used:

• The correlation matrix Rx = E[x(i)xT (i)] of the inputs x(i).

• The cross-correlation vector rxd = E[x(i)d(i)] between the input vector
x(i) and the desired response d(i).

• Using the stationarity assumption, the correlation matrix can be com-

3

puted from the formula

Rx = lim
n→∞

1

n

n∑
i=1

x(i)xT (i) = lim
n→∞

1

n
XT (n)X(n)

• Similarly, the cross-correlation vector becomes

rxd = lim
n→∞

1

n

n∑
i=1

x(i)d(i) = lim
n→∞

1

n
XT (n)d(n)

• Using these formulas, the linear least-squares (pseudoinverse) solution
to the filtering problem can be expressed in the form

wo = lim
n→∞

w(n + 1) = R−1
x rxd

• This is called the Wiener filter.

4

3.5 Least-Mean-Square Algorithm

• Wiener filter requires the knowledge or estimation of the correlation
matrix Rx and the cross-correlation vector rxd.

• The least-mean-square (LMS) algorithm is a simple adaptive way to
estimate the Wiener filter.

• It uses the instantaneous values of the cost function:

E(w) =
1

2
e2(n)

where e(n) is the error signal at time n.

• One can easily derive the result

∂E(w)

∂w(n)
= −x(n)e(n) = ĝ(n)

where ĝ(n) is the instantaneous estimate for the gradient vector at
time n.

5

• Using this estimate for the gradient vector in the method of steepest
descent yields the LMS algorithm

ŵ(n + 1) = ŵ(n) + ηx(n)e(n).

• LMS algorithm is a standard tool in adaptive signal processing.

• LMS algorithm is a stochastic gradient algorithm.

• After convergence, ŵ(n) fluctuates randomly around the correct Wie-
ner solution.

6

Summary of LMS algorithm

• Training sample: Input signal vector = x(n)
Desired response = d(n)

• User selected parameter: η

• Initialization. Set ŵ(0) = 0

• Computation. For n = 1, 2, . . . compute

e(n) = d(n)− ŵT (n)x(n)

ŵ(n + 1) = ŵ(n) + ηx(n)e(n)

7

• The LMS algorithm converges near the correct Wiener solution if the
learning parameter satisfies the condition

0 < η <
2

tr[Rx]

• Here tr[Rx] denotes the trace of the correlation matrix Rx.

• Generally, the trace of a square matrix is the sum of its diagonal ele-
ments.

• Therefore, tr[Rx] can be estimated easily by computing the average of
xT (i)x(i), or squares of the inputs.

8

Properties of the LMS Algorithm

• Computationally simple.

• Model independent, leading to robustness.

• Robustness: small model uncertainties result in small estimation errors.

• It has recently been shown that the LMS algorithm minimizes the
maximum possible estimation error.

• In practice, LMS algorithm is often used for tracking nonstationary
variations in the input data.

• On the other hand, the LMS algorithm converges slowly.

• It is also sensitive to the condition number (eigenvalue spread) of the
data correlation matrix Rx.

• Typically the learning parameter of the LMS algorithm is chosen to be
a suitable constant η(n) = η0 for all n.

9

• In a stationary environment, a better strategy is to use a variable
learning rate

η(n) =
η0

1 + n/τ

• Using the search time constant τ allows the algorithm first get fairly
close to the correct solution.

• After this, the decreasing η(n) makes the algorithm converge closer to
the optimal solution.

• A similar time-varying learning parameter η(n) is useful also in other
stochastic gradient algorithms.

10

11

3.8 Perceptron

• Whereas the LMS algorithm uses a linear neuron, Rosenblatt’s percept-
ron is built around a nonlinear neuron.

• It uses the classic McCulloch-Pitts neuron model discussed briefly in
Chapter 1.

• This consists of a linear combiner followed by a hard limiter (signum
function).

• The output of the neuron is thus either +1 or −1.

• The hard limiter input or induced local field of the neuron is

v =
m∑

i=1

wixi + b

12

x 1

x
2

x
m

Bias,

v

Inputs

w
m

Output

y

Hard
limiter

(v)φ

b

w
1

w
2

Signal-flow graph of the perceptron

• The goal of the perceptron is to correctly classify the set of inputs
x1, x2, . . . , xm into one of two classes, C1 or C2.

13

• The decision rule is: assign the point represented by the inputs
x1, x2, . . . , xm to:
- class C1 if the perceptron output y is +1;
- class C2 if the output y is −1.

• In the simplest form of the perceptron, there are two decision regions
corresponding to classes C1 and C2.

• They are separated by a hyperplane defined by the equation

m∑
i=1

wixi + b = 0.

• An example for the case of two input variables x1 and x2.

14

• In this case, the hyperplane becomes a straight line.

• A nonzero bias merely shifts the decision boundary (hyperplane) away
from the origin.

15

3.9 Perceptron Convergence Theorem

• In the following, an error-correction type learning algorithm is derived
for the perceptron.

• It is more convenient to work with (m + 1)-dimensional augmented
input column vector

x(n) = [+1, x1(n), x2(n), . . . , xm(n)]T

and the respective augmented weight vector

w(n) = [b(n), w1(n), w2(n), . . . , wm(n)]T .

• Here the bias b(n) is treated as a synaptic weight w0(n) driven by a
fixed input x0(n) = 1.

• Then the linear combiner output (local field) is simply

v(n) = wT (n)x(n) =
m∑

i=0

wi(n)xi(n)

16

• For fixed n, the equation wTx = 0 defines a hyperplane.

• This is the decision surface between the two input classes.

• The perceptron functions properly if the two classes C1 and C2 are
linearly separable by some hyperplane.

• See figure; in case (b), there does not exist any separating hyperplane
(a line in the 2-dimensional case shown here).

17

• Assume now that the input variables of the perceptron originate from
two linearly separable classes.

• Denote by x1(1),x1(2), . . . the subset of training vectors belonging to
the class C1.

• Respectively, the training vectors x2(1),x2(2), . . . come from the class
C2.

• The total training set is the union of these sets.

• The perceptron learning algorithm adjusts the weight vector w until a
separating hyperplane is found.

• After convergence, the weight vector w satisfies the conditions

wTx > 0 for every input vector x ∈ C1

wTx ≤ 0 for every input vector x ∈ C2

• The algorithm for adapting the weight vector of the elementary percept-
ron may now be formulated as follows:

18

1. If the n-th training vector x(n) is correctly classified by the weight
vector w(n) computed at the n-th iteration, no correction is ma-
de:

w(n + 1) = w(n), if wTx(n) > 0 and x(n) ∈ C1

w(n + 1) = w(n), if wTx(n) ≤ 0 and x(n) ∈ C2

2. Otherwise, the weight vector w(n) is updated using the rule

w(n + 1) = w(n)− η(n)x(n) if wT (n)x(n) > 0 and x(n) ∈ C2

w(n + 1) = w(n) + η(n)x(n) if wT (n)x(n) ≤ 0 and x(n) ∈ C1

Here again η(n) is a positive learning-rate parameter.

• If η(n) = η > 0 is a constant, this learning algorithm is called a fixed
increment adaptation rule for the perceptron.

• One can prove that the fixed increment rule always converges to a
separating weight vector for linearly separable classes.

• The proof can be found in Haykin’s book, pp. 139-141.
19

• The convergence takes place in a finite number of iterations.

• The separating weight vector is not unique.

• Another variant of perceptron learning algorithm: absolute error cor-
rection procedure.

• In this algorithm, the learning parameter η(n) is variable.

• It is defined as the smallest integer for which

η(n) ‖ x(n) ‖2 > | wT (n)x(n) |

• Assume that the inner product wT (n)x(n) at iteration n has an incor-
rect sign.

• Using this procedure wT (n + 1)x(n) at iteration n + 1 would have a
correct sign.

• The absolute error procedure can be realized using standard fixed inc-
rement adaptation.

20

• This is done by showing each pattern x(i) repeatedly to the perceptron
until x(i) is classified correctly.

• The quantized response of the perceptron

y(n) = sgn[wT (n)x(n)]

is written compactly using the signum function sgn(.)

• Recall that sgn(v) = +1, if v > 0; sgn(v) = −1, if v < 0.

• The quantized desired response is used:
d(n) = +1 if x(n) belongs to the class C1;
d(n) = −1 if x(n) ∈ C2.

• This allows to write the adaptation algorithm compactly in the form
of the error-correction learning rule

w(n + 1) = w(n) + η(n)[d(n)− y(n)]x(n)

• Here the learning parameter is a positive constant limited to the range
0 < η ≤ 1.

21

• A small learning parameter η provides stable weight vector estimates
by averaging the input data.

• However, then the algorithm responds slowly to statistical variations
in the input data.

22

Summary of the Perceptron Convergence Algorithm

Variables and parameters:

x(n) = (m + 1)-by-1 input vector
= [+1, x1(n), x2(n), . . . , xm(n)]T

w(n) = (m + 1)-by-1 weight vector
= [b(n), w1(n), w2(n), . . . , wm(n)]T

b(n) = bias
y(n) = actual response (quantized)
d(n) = desired response
η = learning-rate parameter, a positive constant less than unity

23

1. Initialization. Set w(0) = 0. Then perform the following computations
for time step n = 1, 2, . . .

2. Activation. At time step n activate the perceptron by applying continuous-
valued input vector x(n) and desired response d(n)

3. Computation of actual reponse.

y(n) = sgn[wT (n)x(n)]

sgn(·) is the signum function.

4. Adaptation of weight vector.

w(n + 1) = w(n) + η[d(n)− y(n)]x(n)

where

d(n) =

{
+1 if x(n) belongs to class C1

−1 if x(n) belongs to class C2

5. Continuation. Increment time step n by one and go back to step 2.

24

3.10 Bayes Classifier and Perceptron

Bayes Classifier

• Bayes classifier is the classical optimal statistical classifier.

• It is discussed more thoroughly in our course “Principles of Pattern
Recognition”.

• Bayes classifier is needed also in neural computing, so we shall review
it briefly in the following.

• It minimizes the average risk R.

• Drawback: requires knowledge of the class distributions.

• This information is often not available in practice.

25

• For two classes C1 and C2, the average risk is defined by

R = c11p1

∫
H1

f(x | C1)dx + c22p2

∫
H2

f(x | C2)dx

+ c21p1

∫
H2

f(x | C1)dx + c12p2

∫
H1

f(x | C2)dx

• Here the various terms are defined as follows:

– pi is the a priori probability that the observation (pattern) vector
x belongs to the class Ci. The sum of class probabilities
p1 + p2 = 1.

– cij is the cost of the decision that x belongs to the class Ci when
it actually comes from the class Cj.

– f(x | Ci) is the conditional probability density of the vectors x
belonging to the class Ci.

– Hi is a tentative decision region of the class Ci. It is called also
the hypothesis that the input vector x comes from the class Ci.

26

• The first two term of the risk R represent correct decisions (classifica-
tions).

• Note: they are often omitted by setting the costs of correct classifica-
tions to zero: c11 = c22 = 0.

• The last two terms of the risk R represent incorrect decisions (misclas-
sifications).

• The task is now to minimize the average risk R.

• This leads to the following Bayes classification rule:

• Define the likelihood ratio of the class densities

Λ(x) =
f(x | C1)

f(x | C2)

and the threshold of the Bayes classifier

ξ =
p2(c12 − c22)

p1(c21 − c11)
.

27

• If Λ(x) > ξ, assign the observation vector x to class C1. Otherwise,
assign it to class C2.

ξ

Assign x to class C1

if ∆(x) > ξ.

Otherwise, assign it

to class C2

Likelihood
ratio Comparator

computer

∆(x)x

• Note that all the data processing is involved in the computation of the
likelihood ratio Λ(x).

• The prior probabilities and costs affect only the value of the threshold
ξ.

• Note that both Λ(x) and ξ are positive.

28

• Therefore, Bayes classifier may as well be implemented by first taking
logarithms of both these quantities.

• This log-likelihood ratio is often more convenient in practice.

log ξ

Assign x to class C1

if log ∆(x) > log ξ.

Otherwise, assign it

to class C2

x Log-likelihood
ratio
computer

log ∆(x)
Comparator

29

Bayes Classifier for a Gaussian Distribution

• Consider now the special case of a two-class problem where both classes
have a multivariate Gaussian distribution:

f(x | Ci) = κ exp

[
−1

2
(x−mi)

TC−1
i (x−mi)

]
The terms here have the following general meaning:

– mi = E[x | Ci] is the mean vector of the class Ci.

– Ci = E[(x−mi)(x−mi)
T | Ci] is the covariance matrix of the

class Ci.

– κ is a scaling constant which normalises the multivariate Gaussian
distribution to have a unit probability mass.
It is defined by

κ =
1

(2π)m/2[detCi]1/2

– In κ, m is the dimensionality of the observation vector x.

30

• In this specific classification problem, we make the following further
assumption:

– The classes C1 and C2 have the same covariance matrix C.

– C is nonsingular (its inverse exists) and nondiagonal (variables
are correlated).

– The classes C1 and C2 are equiprobable: p1 = p2 = 1/2.

– Misclassifications have the same cost c21 = c12, and correct clas-
sifications have zero costs c11 = c22 = 0.

• It is now fairly easy to derive the Bayes classifier by inserting these
values into its formula.

31

• After some manipulations, one gets (Haykin pp. 146-147)

y = wTx + b

where:
- y = logΛ(x)
- w = C−1

i (m1 −m2)
- b a constant given in Haykin’s formula (3.87).

• The classification rule is simply: if y > 0, x belongs to the class C1,
otherwise to the class C2.

• Thus the Bayes classifier reduces to a linear classifier in this Gaussian
special case.

32

A Comparison with the Perceptron

• Perceptron is also a linear classifier.

• However, there are some important differences between the perceptron
and the Bayes classifiers in Gaussian case.

• The perceptron assumes that the classes are linearly separable, while
the Gaussian distributions of the two classes overlap each other and
are not separable.

• The Bayes classifier minimizes the probability of the classification error.
33

• The shaded areas in the figure correspond to misclassifications.

• The perceptron convergence algorithm is nonparametric: it makes no
assumptions on the underlying distributions.

• It may work well for non-Gaussian, heavily skewed input distributions.

• The Bayes classifier assumes Gaussian distributions (in the special case
leading to the linear classifier), and is therefore parametric.

• The perceptron convergence algorithm is adaptive and simple to imple-
ment.

34

3.11 Summary and Discussion

• Both the perceptron and the LMS algorithms are based on error-
correction learning.

• They can be used for a single neuron.

• The LMS algorithm uses a linear neuron.

• The perceptron uses a hard-limiting (signum) nonlinearity.

• The LMS algorithm is still used widely in adaptive signal processing.

• The perceptron algorithm is not used in practice currently.

• Reason: perceptron is not capable of making some global generaliza-
tions based on locally learned examples.

• Minsky and Papert (1969) showed this in their book.

• They conjectured that the same would hold also for multilayer percept-
rons.

35

• This guess led to a decrease in interest in neural networks.

• Neural networks did not become important until in the mid-1980s.

• Both multilayer perceptrons (Chapter 4) and radial basis function networks
(Chapter 5) overcome the limitations of the single-layer perceptron.

36

	Linear Least-Squares Filter
	Least-Mean-Square Algorithm
	Perceptron
	Perceptron Convergence Theorem
	Bayes Classifier and Perceptron
	Summary and Discussion

