3.4 Linear Least-Squares Filter

e Two characteristics of linear least-squares filter:

1. The filter is built around a single linear neuron.

2. The cost function is the sum of error squares, as defined in the
Gauss-Newton method.

e The error of the input vector x(i) at time n is (section 3.2)
e(i) = d(i) — x" (i)w(n)
e Collecting these equations into matrix-vector form yields
e(n) = d(n) — X(n)w(n)
where d(n) is the n x 1 desired response vector:
d(n) = [d(1),d(2),...,d(n)]"
and X(n) is the n x m data matrix:

X(n) = [x(1),x(2),... ,x(n)]T



The Jacobian of the error vector e(n) with respect to the weight vector
w(n) is simply

Substituting this into the Gauss-Newton iteration formula yields the
linear least-squares filter

w(n+1) = [XT(n)X(n)] X" (n)d(n) = X*(n)d(n)

where
X*(n) = [X*(n)X(n)] "' X" (n)

is the pseudoinverse of X(n).

The n x m matrix X(n) has usually not a standard inverse.



Wiener Filter

e Assume now that the input vectors x(7) and the desired responses d(7)
are stationary.

e This means that their statistical properties do not depend on the time
instant .

e Then expectations (ensemble averages) can be computed from long-
term sample or time averages.

e In particular, the following second-order statistics are used:
e The correlation matrix R, = E[x(i)x”(i)] of the inputs x(i).

e The cross-correlation vector r,; = E[x(i)d(7)] between the input vector
x(7) and the desired response d(7).

e Using the stationarity assumption, the correlation matrix can be com-



puted from the formula

1 ¢ 1

R, = lim - x(i)x" (i) = lim —X*(n)X(n)
n—oo n—oo M,

i=1

e Similarly, the cross-correlation vector becomes

n—oo N

1 < 1
Iy = lim ;_1 x(7)d (i) im (n)d(n)
e Using these formulas, the linear least-squares (pseudoinverse) solution

to the filtering problem can be expressed in the form

w, = lim w(n+1) = R, 'r.q
n—oo

e This is called the Wiener filter.



3.5

Least-Mean-Square Algorithm

Wiener filter requires the knowledge or estimation of the correlation
matrix R, and the cross-correlation vector r,,.

The least-mean-square (LMS) algorithm is a simple adaptive way to
estimate the Wiener filter.

It uses the instantaneous values of the cost function:

where e(n) is the error signal at time n.

One can easily derive the result

0E(w) o
Gy = ~X(meln) = &(n)

where g(n) is the instantaneous estimate for the gradient vector at
time n.

5



Using this estimate for the gradient vector in the method of steepest
descent yields the LMS algorithm

w(n+1) = w(n) 4+ nx(n)e(n).

LMS algorithm is a standard tool in adaptive signal processing.
LMS algorithm is a stochastic gradient algorithm.

After convergence, w(n) fluctuates randomly around the correct Wie-
ner solution.



Summary of LMS algorithm

e Training sample: Input signal vector = x(n)
Desired response = d(n)
e User selected parameter: n
e Initialization. Set w(0) =0
e Computation. For n = 1,2,... compute
e(n) = d(n) — ¥ (wx(n)
w(n+1) = w(n) +nx(n)e(n)



The LMS algorithm converges near the correct Wiener solution if the
learning parameter satisfies the condition

O<n<
TS R,

Here tr[R,] denotes the trace of the correlation matrix R,,.

Generally, the trace of a square matrix is the sum of its diagonal ele-
ments.

Therefore, tr[R,] can be estimated easily by computing the average of
xT(i)x(7), or squares of the inputs.



Properties of the LMS Algorithm

Computationally simple.
Model independent, leading to robustness.
Robustness: small model uncertainties result in small estimation errors.

It has recently been shown that the LMS algorithm minimizes the
maximum possible estimation error.

In practice, LMS algorithm is often used for tracking nonstationary
variations in the input data.

On the other hand, the LMS algorithm converges slowly.

It is also sensitive to the condition number (eigenvalue spread) of the
data correlation matrix R,.

Typically the learning parameter of the LMS algorithm is chosen to be
a suitable constant n(n) = nq for all n.

9



In a stationary environment, a better strategy is to use a variable

learning rate
"o

n(n) = m

Using the search time constant T allows the algorithm first get fairly
close to the correct solution.

After this, the decreasing 7(n) makes the algorithm converge closer to
the optimal solution.

A similar time-varying learning parameter 7(n) is useful also in other
stochastic gradient algorithms.

10



n
e Standard LMS algorithm
r
Mo n
(log scale)
Search-then-converge
schedule
0179 -
Stochastic
approximation

schedule

0.017,

11



3.8 Perceptron

e Whereas the LMS algorithm uses a linear neuron, Rosenblatt’s percept-
ron is built around a nonlinear neuron.

It uses the classic McCulloch-Pitts neuron model discussed briefly in
Chapter 1.

This consists of a linear combiner followed by a hard limiter (signum
function).

e The output of the neuron is thus either +1 or —1.

The hard limiter input or induced local field of the neuron is

v = iwixi +0b
i=1

12



Inputs

X1

Output

Vo) P

—O———0 Y
Hard
limiter

x

N
\35 o2 //

<O

X
m

Signal-flow graph of the perceptron

e The goal of the perceptron is to correctly classify the set of inputs
Z1,T2,...,T, into one of two classes, C; or Cs.

13



e The decision rule is: assign the point represented by the inputs
X1, X9, ..., Ty, to:
- class C; if the perceptron output ¥ is +1;
- class Cy if the output y is —1.

In the simplest form of the perceptron, there are two decision regions
corresponding to classes C; and Cs.

e They are separated by a hyperplane defined by the equation

=1

An example for the case of two input variables z; and z».

14



X

Class 6,

X

Decision boundary
WX+ wyx, +b=0

e In this case, the hyperplane becomes a straight line.

e A nonzero bias merely shifts the decision boundary (hyperplane) away
from the origin.

15



3.9 Perceptron Convergence Theorem

e In the following, an error-correction type learning algorithm is derived
for the perceptron.

e It is more convenient to work with (m + 1)-dimensional augmented
input column vector

x(n) = [+1,21(n), z2(n), ..., zm(n)]"

and the respective augmented weight vector

w(n) = [b(n),wi(n),ws(n),..., wn(n)".

e Here the bias b(n) is treated as a synaptic weight wg(n) driven by a
fixed input x¢(n) =

e Then the linear combiner output (local field) is simply



e For fixed n, the equation w’x = 0 defines a hyperplane.
e This is the decision surface between the two input classes.

e The perceptron functions properly if the two classes C; and Cy are
linearly separable by some hyperplane.

Decision
/ Boundary
/

(b)

(a)

e See figure; in case (b), there does not exist any separating hyperplane
(a line in the 2-dimensional case shown here).

17



Assume now that the input variables of the perceptron originate from
two linearly separable classes.

Denote by x;1(1),x1(2), ... the subset of training vectors belonging to
the class C;.

Respectively, the training vectors x2(1), X2(2), . .. come from the class
Cs.

The total training set is the union of these sets.

The perceptron learning algorithm adjusts the weight vector w until a
separating hyperplane is found.

After convergence, the weight vector w satisfies the conditions
wlx > 0 for every input vector x € C;
w!x < 0 for every input vector x € C,
The algorithm for adapting the weight vector of the elementary percept-

ron may now be formulated as follows:
18



1. If the n-th training vector x(n) is correctly classified by the weight
vector w(n) computed at the n-th iteration, no correction is ma-
de:

w(n+1) = w(n), if w'x(n) >0 and x(n) € C;
w(n +1) =w(n), if w'x(n) <0 and x(n) € C,

2. Otherwise, the weight vector w(n) is updated using the rule
w(n+1) =w(n) —n(n)x(n) if w’(n)x(n) >0 and x(n) € C,
w(n+1) = w(n) +n(n)x(n) if w’ (n)x(n) <0 and x(n) € C
Here again 7(n) is a positive learning-rate parameter.

e If n(n) =n > 0 is a constant, this learning algorithm is called a fixed
increment adaptation rule for the perceptron.

e One can prove that the fixed increment rule always converges to a
separating weight vector for linearly separable classes.

e The proof can be found in Haykin's book, pp. 139-141.
19



The convergence takes place in a finite number of iterations.
The separating weight vector is not unique.

Another variant of perceptron learning algorithm: absolute error cor-
rection procedure.

In this algorithm, the learning parameter 7(n) is variable.

It is defined as the smallest integer for which

n(n) I x(n) *> | wh(n)x(n) |
Assume that the inner product w’'(n)x(n) at iteration n has an incor-
rect sign.

Using this procedure w’ (n + 1)x(n) at iteration n + 1 would have a
correct sign.

The absolute error procedure can be realized using standard fixed inc-
rement adaptation.

20



This is done by showing each pattern x(i) repeatedly to the perceptron
until x(7) is classified correctly.

The quantized response of the perceptron

y(n) = sgnlw? (n)x(n)
is written compactly using the signum function sgn(.)
Recall that sgn(v) = +1, if v > 0; sgn(v) = —1, if v <O.

The quantized desired response is used:
d(n) = +1 if x(n) belongs to the class Cy;
d(n) = —1if x(n) € Ca.

This allows to write the adaptation algorithm compactly in the form
of the error-correction learning rule

w(n+1) = w(n)+n(n)ldn) —y(n)x(n)

Here the learning parameter is a positive constant limited to the range

0<n<l1.
21



e A small learning parameter 7 provides stable weight vector estimates
by averaging the input data.

e However, then the algorithm responds slowly to statistical variations
in the input data.

22



Summary of the Perceptron Convergence Algorithm

Variables and parameters:

x(n) = (m+ 1)-by-1 input vector
= [+Lz1(n), 22(n), ..., 2m(n)]"
w(n) = (m+1)-by-1 welght vector

= [b(n), wi(n), wa(n), ..., wm(n)]"

b(n) = bias

y(n) = actual response (quantized)

d(n) = desired response

n = learning-rate parameter, a positive constant less than unity

23



. Initialization. Set w(0) = 0. Then perform the following computations
for timestepn =1,2,...

. Activation. At time step n activate the perceptron by applying continuous-
valued input vector x(n) and desired response d(n)

. Computation of actual reponse.
y(n) = sgn[w" (n)x(n)]

sgn(+) is the signum function.
. Adaptation of weight vector.

w(n+1) = w(n) +nld(n) —y(n)x(n)
where

d(n) = +1 if x(n) belongs to class C;

T —1if x(n) belongs to class Cy

. Continuation. Increment time step n by one and go back to step 2.

24



3.10 Bayes Classifier and Perceptron

Bayes Classifier

e Bayes classifier is the classical optimal statistical classifier.

e It is discussed more thoroughly in our course “Principles of Pattern
Recognition”.

e Bayes classifier is needed also in neural computing, so we shall review
it briefly in the following.

e It minimizes the average risk R.
e Drawback: requires knowledge of the class distributions.

e This information is often not available in practice.

25



e For two classes C; and C,, the average risk is defined by

R = cup f(x | Cr)dx + coapo f(x | Cy)dx
H1 Ho

+  Capr f(x | Cr)dx + ciapo f(x|Cy)dx
Ho H1

e Here the various terms are defined as follows:

— p; is the a priori probability that the observation (pattern) vector
x belongs to the class C;. The sum of class probabilities
p1t+p2 =1

— ¢;j is the cost of the decision that x belongs to the class C; when
it actually comes from the class C;.

— f(x | C;) is the conditional probability density of the vectors x
belonging to the class C;.

— H; is a tentative decision region of the class C;. It is called also
the hypothesis that the input vector x comes from the class C;.

26



The first two term of the risk R represent correct decisions (classifica-
tions).

Note: they are often omitted by setting the costs of correct classifica-
tions to zero: c11 = ¢o3 = 0.

The last two terms of the risk R represent incorrect decisions (misclas-
sifications).

The task is now to minimize the average risk R.
This leads to the following Bayes classification rule:

Define the likelihood ratio of the class densities

A(X) _ f(X ‘ Cl)

flx|G)

and the threshold of the Bayes classifier

D2 (012 - 022)

p1(021 - 011).
27



If A(x) > &, assign the observation vector x to class C,. Otherwise,
assign it to class C».

] P Assign z to class C;
r Likelihood Alx) FA>S) > £
— =7 ratio — = Comparator |—> ! (x) >&
computer Otherwise, assign it
i to class C,

1.

Note that all the data processing is involved in the computation of the
likelihood ratio A(x).

The prior probabilities and costs affect only the value of the threshold

€.

Note that both A(x) and & are positive.

28



e Therefore, Bayes classifier may as well be implemented by first taking
logarithms of both these quantities.

e This log-likelihood ratio is often more convenient in practice.

z R . Assign z to class C;
5 Log-likelihood log A(x) if los A 1
—>7 ratio > Comparator —> 1198 (z) > log&.

Otherwise, assign it
computer
Zﬁ log ¢

to class Cy

29



Bayes Classifier for a Gaussian Distribution

e Consider now the special case of a two-class problem where both classes
have a multivariate Gaussian distribution:

f(x|C)= kexp —%(X —m)"C (x — my)

The terms here have the following general meaning:

— m; = E[x | C;] is the mean vector of the class C;.

- C; = E[(x — my)(x — m;)T | C;] is the covariance matrix of the
class C;.

— K is a scaling constant which normalises the multivariate Gaussian
distribution to have a unit probability mass.
It is defined by
1

"7 2r)m2[detCy] 12

— In k, m is the dimensionality of the observation vector x.
30



e In this specific classification problem, we make the following further
assumption:

The classes C; and Cy have the same covariance matrix C.

C is nonsingular (its inverse exists) and nondiagonal (variables
are correlated).

The classes C; and C, are equiprobable: p; = py = 1/2.

Misclassifications have the same cost ¢y; = ¢35, and correct clas-
sifications have zero costs ¢;; = c99 = 0.

e It is now fairly easy to derive the Bayes classifier by inserting these
values into its formula.

31



e After some manipulations, one gets (Haykin pp. 146-147)
y= wix+b

where:

-y = logA(x)

-w = C;'(m; — my)

- b a constant given in Haykin's formula (3.87).

e The classification rule is simply: if y > 0, x belongs to the class C;,
otherwise to the class C.

e Thus the Bayes classifier reduces to a linear classifier in this Gaussian
special case.

32



A Comparison with the Perceptron

e Perceptron is also a linear classifier.

e However, there are some important differences between the perceptron
and the Bayes classifiers in Gaussian case.

e The perceptron assumes that the classes are linearly separable, while
the Gaussian distributions of the two classes overlap each other and

are not separable.

Decision
boundary

fx(x16,)

\

0 ‘\ Hy

Class  Class
€, €,

e The Bayes classifier minimizes the probability of the classification error.



The shaded areas in the figure correspond to misclassifications.

The perceptron convergence algorithm is nonparametric: it makes no
assumptions on the underlying distributions.

It may work well for non-Gaussian, heavily skewed input distributions.

The Bayes classifier assumes Gaussian distributions (in the special case
leading to the linear classifier), and is therefore parametric.

The perceptron convergence algorithm is adaptive and simple to imple-
ment.

34



3.11 Summary and Discussion

Both the perceptron and the LMS algorithms are based on error-
correction learning.

They can be used for a single neuron.

The LMS algorithm uses a linear neuron.

The perceptron uses a hard-limiting (signum) nonlinearity.

The LMS algorithm is still used widely in adaptive signal processing.
The perceptron algorithm is not used in practice currently.

Reason: perceptron is not capable of making some global generaliza-
tions based on locally learned examples.

Minsky and Papert (1969) showed this in their book.

They conjectured that the same would hold also for multilayer percept-
rons.

35



e This guess led to a decrease in interest in neural networks.
e Neural networks did not become important until in the mid-1980s.

e Both multilayer perceptrons (Chapter 4) and radial basis function networks
(Chapter 5) overcome the limitations of the single-layer perceptron.

36



	Linear Least-Squares Filter 
	Least-Mean-Square Algorithm 
	Perceptron 
	Perceptron Convergence Theorem 
	Bayes Classifier and Perceptron 
	Summary and Discussion 

