
9.4 Summary of the SOM Algorithm

• The essential ingredients of Kohonen’s SOM algorithm are:

– A continuous input space of activation patterns (data).

– A topology of the network defined by a lattice of neurons. This
in turn defines a discrete output space.

– A time-varying neighborhood function hj,i(x)(n). This is defined
around a winning neuron i(x).

– A learning-rate parameter η(n). This starts from an initial value
η0 and then decreases, but never goes to zero.

• Instructions on how to choose the learning rate and the neighborhood
during learning are given in Section 9.3.

• In particular, η(n) should be kept at a small value (0.01 or less) for
typically thousands of iterations.

• This provides a good statistical accuracy.

1



• The neighborhood function should contain only the nearest neighbors
of the winning neuron during the convergence phase.

• After initialization, three basic steps are repeated in the SOM algorithm
until it converges.

• These are: sampling, similarity matching, and updating.

2



• Summary of the SOM algorithm:

1. Initialization. Choose randomly the initial weight vectors wj(0),
j = 1, 2, . . . , l, of the l neurons in the lattice.

- Alternatively, the weight vectors may be chosen randomly from
the available input (data) vectors x1, . . . ,xN .

2. Sampling. Take a sample vector x(n) from the input space for
the iteration n.

3. Similarity matching. Let i(x) denote the index of best matching
(winning) neuron for the sample vector x.

- At iteration n, i(x) is found from the minimum Euclidean dis-
tance criterion

i(x) = arg min ‖ x(n)−wj ‖, j = 1, 2, . . . , l

3



4. Updating. Update the weight vectors of all neurons using the rule

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)[x(n)−wj(n)],

– Both the learning parameter η(n) and the neighborhood
function hj,i(x)(n) are varied during learning.

– This is done for achieving best results.

5. Continuation. Continue with step 2 until the feature map has
converged.

• Notice the similarities (and some differences) with the k-means clus-
tering algorithm (Section 5.13, part 2).

4



9.5 Properties of the Feature Map

• Assume now that the SOM algorithm has converged.

• The feature map computed by SOM describes important statistical
properties of the input space (data).

• Let H denote a spatially continuous input (data) space.

• Let A denote a spatially discrete output space.

• The neurons of the output space are arranged in lattice form.

• Let Φ denote a nonlinear transformation called a feature map.

• Φ maps the input space H onto the output space A: Φ : H → A.

• This is an abstract representation for defining the location of the win-
ning neuron i(x) ∈ A.

5



• The weight vector wi can be viewed as a pointer into the input space.

• These pointers constitute a kind of inverse mapping for the feature
map;

• The feature map Φ has some important properties.
6



Property 1: Approximation of the Input Space

• The feature map Φ provides a good approximation to the input (data)
space H.

• The feature map is represented by the weight vectors wi in the input
space H.

• The basic aim of the SOM algorithm: store a large set of input vectors
x ∈ H.

• This is done by finding a smaller set of prototypes wj ∈ H, providing
a good approximation to the original input space H.

• Theoretical basis: vector quantization theory.

• In vector quantization, one tries to reduce the dimensionality of the
data (compress the data) in an optimal way.

7



• In the following, we discuss the underlying theory.

• Simple encoder-decoder model.

• There c(x) is the encoder of the input vector x.

• x′(c) is the decoder of c(x).

8



• Thus c(x) is the data compressing mapping that forms the code.

• The inverse mapping x′(c) approximates the data vector x from its
coded version c(x).

• Both these mappings are generally nonlinear.

• Because of data compression, x′(c) is an approximation of the input
vector x.

9



• The randomly chosen input vectors x have a common probability den-
sity fx(x).

• The optimum encoding-decoding scheme is determined by minimizing
the expected distortion

D =
1

2
E[d(x,x′)] =

1

2

∫ ∞

−∞
d(x,x′)fx(x)dx

• Here d(x,x′) is a distortion measure.

• A popular distortion measure is the squared Euclidean distance

d(x,x′) = ‖ x− x′ ‖2

• This leads to the standard mean-square distortion error

D =
1

2
E[‖ x− x′ ‖2] =

1

2

∫ ∞

−∞
‖ x− x′ ‖2 fx(x)dx

• The generalized Lloyd algorithm contains the necessary conditions for
minimizing the mean-squared distortion.

10



• These conditions are:

1. Given the input vector x, choose the code c = c(x) to minimize
the squared error distortion ‖ x− x′(c) ‖2.

2. Given the code c, compute the reconstruction vector x′ = x′(c)
as the centroid of those input vectors x that satisfy condition 1.

• Condition 1 is recognized as a nearest-neighbor encoding rule.

• The generalized Lloyd algorithm operates in a batch training mode.

• The generalized Lloyd algorithm has also been called K-means algo-
rithm.

• The algorithm alternately optimizes the encoder c(x) based on condi-
tion 1, and then the decoder x′(c) to satisfy condition 2.

• The algorithm terminates when a minimum of the expected distortion
D is reached.

• For avoiding suboptimal local minimum solutions, the algorithm can
be run several times with different initial code vectors.

11



• The algorithm is closely related to the SOM algorithm (Luttrell, 1989).

• This can be shown by considering a more general coding scheme shown
below

• There a signal-independent noise process v has been added to the code
c(x).

• v represents the distortion effect of a noisy communication channel
over which the coded vectors are (possibly) transmitted.

12



• Let π(v) be the probability density function (pdf) of the additive noise
v.

• For the noisy coding system, the modified expected distortion D1

should be used.

D1 =
1

2

∫ ∞

−∞
dxfx(x)

∫ ∞

−∞
dvπ(v) ‖ x− x′(c(x) + v) ‖2

• Minimizing D1 (instead of D) leads to the following modified condi-
tions for the generalized Lloyd algorithm:

1. Given the input vector x, choose the code c = c(x) to minimize
the distortion measure

D2 =

∫ ∞

−∞
‖ x− x′[c(x) + v] ‖2 π(v)dv

2. Given the code c, compute the reconstruction vector x′ = x′(c)
to satisfy the condition

x′(c) =
M1

M0

=
E[xπ(c− c(x))]

E[π(c− c(x))]
(1)

13



where the centroid and the normalization factor are respectively

M1 =

∫ ∞

−∞
xπ(c− c(x))fx(x)dx,

M0 =

∫ ∞

−∞
π(c− c(x))fx(x)dx.

• The derivations are sketched in Haykin’s book on pp. 457-458, and are
omitted in our basic course.

• If the probability density π(v) of noise equals to a Dirac delta function
δ(v), these conditions reduce to those obtained for the basic noiseless
model.

• Assume that π(v) is a smooth function of v.

• Then condition 1 above can be approximated by that of the noiseless
situation.

• This in turn reduces to a nearest neighbor encoding rule as before.

14



• Condition 2 for the noisy model can be realized using the stochastic
descent learning algorithm

∆x′(c) = ηπ(c− c(x))[x− x′(c)] (2)

• The update is applied to all c for which

π(c− c(x)) > 0

• For justifications, see again Haykin’s book, p. 458.

• The update equation (2) above is equal to the SOM algorithm

• The correspondencies between SOM algorithm and the encoding-
decoding model

Encoding-decoding model SOM algorithm
Encoder c(x) Best-matching neuron i(x)
Reconstruction vector x′(c) Synaptic weight vector wj

Probability density function π(c− c(x)) Neighborhood function hj,i(x)

15



• Hence, the generalized Lloyd algorithm for vector quantization is the
batch training version of the SOM algorithm with zero neighborhood
size π(0) = 1.

• Important points from the above discussion:

– The SOM algorithm is a vector quantization algorithm, which
provides a good approximation to the input space H.

– SOM can be derived from vector quantization considerations, too.

– The neighborhood function hj,i(x) in SOM has the form of a
probability density function.

– The Gaussian neighborhood function used in SOM corresponds
to assuming the noise v in the previous model to be zero-mean
and Gaussian.

• One can easily derive a batch version of SOM by rewriting Eq. (1) in
discrete form.

• See Problem 9.5 for the definition of batch SOM.

16



• Batch SOM does not depend on the order of presentation of the input
vectors.

• There is no need for a learning-rate schedule.

• Batch SOM still requires the use of a neighborhood function.

17



Property 2: Topological Ordering

• The feature map Φ computed by the SOM algorithm is topologically
ordered.

• This means that the spatial location of a neuron in the lattice corres-
ponds to a particular domain or feature of input patterns.

• The topological ordering property directly follows from the SOM up-
date rule:

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)[x(n)−wj(n)]

• This rule forces the weight vector wi of the winning neuron i(x) to
move toward the input vector x.

• It also moves the weight vectors in the neighborhood of the winning
neuron to the same direction.

• Thus the feature map can be understood as an elastic or virtual net
that is fitted to the input data.

18



• The weight vectors approximate the input space (data), characterizing
its important properties.

• The feature map Φ is usually displayed in the input space.

• The weight vectors are shown as dots, and the neighboring weight
vectors are connected with lines.

19



Property 3: Density Matching

• The feature map Φ reflects the statistics of the input distribution.

• Regions in which the data are dense occupy a larger domain in the
output space than sparsely populated regions.

• Thus regions where the probability of the data is high are mapped with
a better resolution.

• Let fx(x) denote the probability density of the input vectors x.

• fx(x) must satisfy the normalization condition∫ ∞

−∞
fx(x)dx = 1

for being a true probability density.

• Let m(x) denote the map magnification factor.

20



• m(x) is the number of neurons in a small volume dx of the input space
H.

• The magnification factor must satisfy the condition∫ ∞

−∞
m(x)dx = l

where l is the total number of neurons in the network.

• For the SOM algorithm to match the input density exactly, we require
that

m(x) ∝ fx(x)

• In two-dimensional feature maps the magnification factor m(x) is not
a simple function of the probability density fx(x) of the input data.

• For one-dimensional maps one can derive a relationship between m(x)
and fx(x).

• Two different results are reported in the literature, depending on the
encoding method:

21



1. Minimum distortion encoding for the noisy coding model:

m(x) ∝ f 1/3
x (x)

- The same result holds for standard vector quantization.

2. Nearest-neighbor encoding:

m(x) ∝ f 2/3
x (x)

- This holds for the standard SOM algorithm.

• Generally, SOM tends to underrepresent regions of high input density
and overrepresent regions of low input density.

• There exist modifications of SOM which can faithfully represent the
probability density fx(x) of the input data.

• See Note 10 in Haykin’s book on pp. 478-479.

22



Property 4: Feature Selection

• SOM is able to select a set of best features for approximating nonli-
nearly distributed input data.

• A culmination of Properties 1-3: Approximation of the input space,
Topological ordering, Density matching

(a) (b)

• In Fig. (a), a linear mapping (line) is sufficient for describing well the
data in one dimension.

23



• Such a mapping is obtained using standard principal components ana-
lysis (PCA).

• For the nonlinearly distributed data in Fig. (b), no linear mapping
performs acceptably.

• However, SOM yields good results.

• In fact, SOM provides a nonlinear generalization of linear principal
components analysis.

24



9.6 Computer Simulations

Two-Dimensional Lattice Driven by a Two-Dimensional Distribution

• 100 neurons arranged
in a 10× 10 lattice.

• Two-dimensional input
vectors x.

• Both components of
x are uniformly distri-
buted in the interval
(−1, +1) (see Fig. a).

• Randomly chosen initial
weights shown in Fig. b.

• Figure c shows the values of the weights and the arising SOM network
after the ordering phase.

• Fig. d depicts the final SOM map after the convergence phase.
25



• In the ordering phase, the map unfolds to form a mesh.

• During the convergence phase, SOM spreads out to fill the input space.

26



One-Dimensional Lattice Driven by a Two-Dimensional Distri-
bution

• Similar uniformly distributed data as previously.

• 100 neurons, but now in a one-dimensional lattice.

27



Parameter Specifications for the Simulations

• The neighborhood function and the learning-rate parameter

• Fig. a depicts the
spread σ(n) of the
neighborhood.

• It starts with an ini-
tial value σ0 = 18
and eventually shrinks
to about 1.

• The learning parameter
η(n) starts from an ini-
tial value η0 = 0.1 and
then decreases to 0.037
(Fig. b).

28



• Figs. c and d show the shape of the Gaussian neighborhood function
in the beginning and at the end of the ordering phase, respectively.

• During the convergence phase, both the learning parameter and the
neighborhood continue to decrease close to zero.

• The initial value of the two-dimensional neighborhood used in the first
experiment.

29


	Summary of the SOM Algorithm 
	Properties of the Feature Map 
	Computer Simulations 

