9.4 Summary of the SOM Algorithm
e The essential ingredients of Kohonen's SOM algorithm are:

— A continuous input space of activation patterns (data).

— A topology of the network defined by a lattice of neurons. This
in turn defines a discrete output space.

— A time-varying neighborhood function h;;x)(n). This is defined
around a winning neuron i(X).

— A learning-rate parameter n(n). This starts from an initial value
1o and then decreases, but never goes to zero.

e Instructions on how to choose the learning rate and the neighborhood
during learning are given in Section 9.3.

e In particular, n(n) should be kept at a small value (0.01 or less) for
typically thousands of iterations.

e This provides a good statistical accuracy.

1

e The neighborhood function should contain only the nearest neighbors
of the winning neuron during the convergence phase.

e After initialization, three basic steps are repeated in the SOM algorithm
until it converges.

e These are: sampling, similarity matching, and updating.

e Summary of the SOM algorithm:

1. Initialization. Choose randomly the initial weight vectors w;(0),
7 =1,2,...,1, of the [neurons in the lattice.

- Alternatively, the weight vectors may be chosen randomly from
the available input (data) vectors x1,...,Xy.

2. Sampling. Take a sample vector x(n) from the input space for
the iteration n.

3. Similarity matching. Let i(x) denote the index of best matching
(winning) neuron for the sample vector x.

- At iteration n, i(x) is found from the minimum Euclidean dis-
tance criterion

i(x) = argmin [x(n)—w; |, j=1,2,...,1

4. Updating. Update the weight vectors of all neurons using the rule
w(n+1) = w;(n) + n(n)hjix (n)[x(n) —w;(n)],

— Both the learning parameter 7n(n) and the neighborhood
function h; ;x)(n) are varied during learning.

— This is done for achieving best results.
5. Continuation. Continue with step 2 until the feature map has

converged.

e Notice the similarities (and some differences) with the k-means clus-
tering algorithm (Section 5.13, part 2).

9.5

Properties of the Feature Map
Assume now that the SOM algorithm has converged.

The feature map computed by SOM describes important statistical
properties of the input space (data).

Let H denote a spatially continuous input (data) space.

Let A denote a spatially discrete output space.

The neurons of the output space are arranged in lattice form.

Let @ denote a nonlinear transformation called a feature map.

® maps the input space H onto the output space A: & : H — A.

This is an abstract representation for defining the location of the win-
ning neuron i(x) € A.

e The weight vector w; can be viewed as a pointer into the input space.

e These pointers constitute a kind of inverse mapping for the feature
map;

® 060000 0 ¢
© 600600 0 0o
® 0 o ,(x). o 0 ©
) ® @ 0 0 Discrete
o0 ® ® @ o outputspace o
® o ® 000
e o ® 000
e 9 ® © 00
| Continuous
| input space ¥

e The feature map ® has some important properties.
6

Property 1: Approximation of the Input Space
The feature map ® provides a good approximation to the input (data)
space 'H.

The feature map is represented by the weight vectors w; in the input
space H.

The basic aim of the SOM algorithm: store a large set of input vectors
x € H.

This is done by finding a smaller set of prototypes w; € H, providing
a good approximation to the original input space H.

Theoretical basis: vector quantization theory.

In vector quantization, one tries to reduce the dimensionality of the
data (compress the data) in an optimal way.

e In the following, we discuss the underlying theory.

Input vector Code
c(x)

Encoder |
c(x)

Reconstruction
vector
x'(c)

Decoder
x'(c)

e Simple encoder-decoder model.
e There c(x) is the encoder of the input vector x.

e x/(c) is the decoder of c(x).

Input vector Code

Encoder
c(x)

Reconstruction
vector
x'(c)

Decoder
x'(c)

Thus c(x) is the data compressing mapping that forms the code.

The inverse mapping x'(c) approximates the data vector x from its
coded version c(x).

Both these mappings are generally nonlinear.

Because of data compression, x'(c) is an approximation of the input
vector Xx.

The randomly chosen input vectors x have a common probability den-

sity fx(X).

The optimum encoding-decoding scheme is determined by minimizing
the expected distortion

D= %E[d(x,x’)]: % /_ Zd(x,x’)fx(x)dx

Here d(x,x’) is a distortion measure.

A popular distortion measure is the squared Euclidean distance
d(x,x) = | x - x|

This leads to the standard mean-square distortion error

1 , 1 [,
D= SEllx=x = 5 [x| fuxix

o0

The generalized Lloyd algorithm contains the necessary conditions for

minimizing the mean-squared distortion.
10

These conditions are:

1. Given the input vector x, choose the code ¢ = ¢(x) to minimize
the squared error distortion || x — x'(c) [|2.
2. Given the code ¢, compute the reconstruction vector X" = x’(c)
as the centroid of those input vectors x that satisfy condition 1.
Condition 1 is recognized as a nearest-neighbor encoding rule.

The generalized Lloyd algorithm operates in a batch training mode.

The generalized Lloyd algorithm has also been called K-means algo-
rithm.

The algorithm alternately optimizes the encoder c(x) based on condi-
tion 1, and then the decoder x'(c) to satisfy condition 2.

The algorithm terminates when a minimum of the expected distortion
D is reached.

For avoiding suboptimal local minimum solutions, the algorithm can

be run several times with different initial code vectors.
11

e The algorithm is closely related to the SOM algorithm (Luttrell, 1989).

e This can be shown by considering a more general coding scheme shown
below

Noise
Y

Input vector
X

Encoder
c(x)

Reconstruction
vector

XI

Decoder

x'(c)

e There a signal-independent noise process v has been added to the code

c(x).

e v represents the distortion effect of a noisy communication channel
over which the coded vectors are (possibly) transmitted.

e Let m(v) be the probability density function (pdf) of the additive noise
V.

e For the noisy coding system, the modified expected distortion D;
should be used.

D, = 1/_oo dx f(x) /_OO dvr(v) || x — x'(c(x) +v) ||

2 [e.9] oo

e Minimizing D; (instead of D) leads to the following modified condi-
tions for the generalized Lloyd algorithm:

1. Given the input vector x, choose the code ¢ = c(x) to minimize
the distortion measure

Dy = /_oo | x —x[c(x) + V] ||* 7(v)dv

2. Given the code c, compute the reconstruction vector x’ = x'(c)
to satisfy the condition

where the centroid and the normalization factor are respectively

o0

M, = / xr(c — e(x)) fx (x)dx,

oo

M,y = / 7(c — c(x)) fx(x)dx.
The derivations are sketched in Haykin's book on pp. 457-458, and are
omitted in our basic course.

If the probability density 7(v) of noise equals to a Dirac delta function
d(v), these conditions reduce to those obtained for the basic noiseless
model.

Assume that 7(v) is a smooth function of v.

Then condition 1 above can be approximated by that of the noiseless
situation.

This in turn reduces to a nearest neighbor encoding rule as before.

14

Condition 2 for the noisy model can be realized using the stochastic

descent learning algorithm

AX'(c) = nm(c - c(x))[x —x(c)] ()

The update is applied to all ¢ for which

m(c—c(x)) >0

For justifications, see again Haykin's book, p. 458.

The update equation (2) above is equal to the SOM algorithm

The correspondencies between SOM algorithm and the encoding-

decoding model

Encoding-decoding model

SOM algorithm

Encoder c(x)
Reconstruction vector x’(c)
Probability density function 7T(C — C(X))

Best-matching neuron i(x)
Synaptic weight vector w;

Neighborhood function h; ;)

15

e Hence, the generalized Lloyd algorithm for vector quantization is the
batch training version of the SOM algorithm with zero neighborhood
size 7(0) = 1.

e Important points from the above discussion:
— The SOM algorithm is a vector quantization algorithm, which
provides a good approximation to the input space H.
— SOM can be derived from vector quantization considerations, too.

— The neighborhood function A ;) in SOM has the form of a
probability density function.

— The Gaussian neighborhood function used in SOM corresponds
to assuming the noise v in the previous model to be zero-mean
and Gaussian.

e One can easily derive a batch version of SOM by rewriting Eq. (1) in
discrete form.

e See Problem 9.5 for the definition of batch SOM.
16

e Batch SOM does not depend on the order of presentation of the input
vectors.

e There is no need for a learning-rate schedule.

e Batch SOM still requires the use of a neighborhood function.

17

Property 2: Topological Ordering
The feature map ® computed by the SOM algorithm is topologically
ordered.

This means that the spatial location of a neuron in the lattice corres-
ponds to a particular domain or feature of input patterns.

The topological ordering property directly follows from the SOM up-
date rule:

w;i(n+1) = w;(n) +0(n)hjic (n)[x(n) — w;(n)]
This rule forces the weight vector w; of the winning neuron i(x) to
move toward the input vector x.

It also moves the weight vectors in the neighborhood of the winning
neuron to the same direction.

Thus the feature map can be understood as an elastic or virtual net

that is fitted to the input data.
18

e The weight vectors approximate the input space (data), characterizing
its important properties.

e The feature map @ is usually displayed in the input space.

e The weight vectors are shown as dots, and the neighboring weight
vectors are connected with lines.

19

Property 3: Density Matching

The feature map ® reflects the statistics of the input distribution.

Regions in which the data are dense occupy a larger domain in the
output space than sparsely populated regions.

Thus regions where the probability of the data is high are mapped with
a better resolution.

Let fx(x) denote the probability density of the input vectors x.

fx(x) must satisfy the normalization condition

/_O; fx(x)dx =1

for being a true probability density.

Let m(x) denote the map magnification factor.

20

m(x) is the number of neurons in a small volume dx of the input space

H.

The magnification factor must satisfy the condition

/_OO m(x)dx =1

o0

where [is the total number of neurons in the network.

For the SOM algorithm to match the input density exactly, we require
that

m(x) o< fi(x)

In two-dimensional feature maps the magnification factor m(x) is not
a simple function of the probability density fx(x) of the input data.

For one-dimensional maps one can derive a relationship between m(x)

and fx(x).

Two different results are reported in the literature, depending on the

encoding method:
21

1. Minimum distortion encoding for the noisy coding model:
m(x) o< f/*(x)

- The same result holds for standard vector quantization.

2. Nearest-neighbor encoding:
m(x) oc fz/*(x)
- This holds for the standard SOM algorithm.

e Generally, SOM tends to underrepresent regions of high input density
and overrepresent regions of low input density.

e There exist modifications of SOM which can faithfully represent the
probability density fx(x) of the input data.

e See Note 10 in Haykin's book on pp. 478-479.

22

Property 4: Feature Selection
e SOM is able to select a set of best features for approximating nonli-
nearly distributed input data.

e A culmination of Properties 1-3: Approximation of the input space,
Topological ordering, Density matching

Output
Output x
x
.
)
* &0 o .D
o/ ° . /-
ol L Input
Input
° o u U u

e In Fig. (a), a linear mapping (line) is sufficient for describing well the
data in one dimension.

23

Such a mapping is obtained using standard principal components ana-
lysis (PCA).

For the nonlinearly distributed data in Fig. (b), no linear mapping
performs acceptably.

However, SOM yields good results.

In fact, SOM provides a nonlinear generalization of linear principal
components analysis.

24

9.6 Computer Simulations

Two-Dimensional Lattice Driven by a Two-Dimensional Distribution

e 100 neurons arranged
in a 10 x 10 lattice.

| e Two-dimensional input
Sy 0 o1 02 vectors x.

e Both components of
x are uniformly distri-
buted in the interval
(—1,+1) (see Fig. a).

| - : e Randomly chosen initial
i @ weights shown in Fig. b.

08

0.6

04} IEEER

020)

e Figure c shows the values of the weights and the arising SOM network
after the ordering phase.

e Fig. d depicts the final SOM map after the convergence phase.
25

e In the ordering phase, the map unfolds to form a mesh.

e During the convergence phase, SOM spreads out to fill the input space.

26

One-Dimensional Lattice Driven by a Two-Dimensional Distri-

bution

e Similar uniformly distributed data as previously.

e 100 neurons, but now in a one-dimensional lattice.

1

0.8

1

-05

0 0.5 1

08
06
04 1§

02

S R) P RS

27

Parameter Specifications for the Simulations

The neighborhood function and the learning-rate parameter

20 T T T T By T
e e e e Fig. a depicts the
100 200 300 400 500 600 700 800 900 1000
® spread o(n) of the
o \\ ‘ { neighborhood.
E 005 B
. - - - e It starts with an ini-
0 100 200 300 400 500 600 700 800 900 1000 .
o tial value oy = 18
AaRE . e ' and eventually shrinks
=] to about 1.
0 10 20 30 40 :Cl; 60 70 80 9 100 ° The |earning parameter
e o o o meen n(n) starts from an ini-
=¥ tial value 79 = 0.1 and
Yo e 50 6 70 0 %0 10 then decreases to 0.037
@ (Flg b)

28

e Figs. c and d show the shape of the Gaussian neighborhood function
in the beginning and at the end of the ordering phase, respectively.

e During the convergence phase, both the learning parameter and the
neighborhood continue to decrease close to zero.

e The initial value of the two-dimensional neighborhood used in the first
experiment.

29

	Summary of the SOM Algorithm
	Properties of the Feature Map
	Computer Simulations

