
Function approximation using RBF network

F (xj) =
m1∑
i=1

wiϕ(‖ xj − ti ‖)

j = 1 . . . N , m1 = 10, N = 25

• 10 basis functions and 25 data points.

• Basis function centers are plotted with circles and data points with
asterisks.

1

5.13 Learning Strategies

• In RBF networks, learning proceeds differently for different layers.

• The linear output layer’s weights are learned rapidly through a linear
optimization strategy.

• The hidden layer’s activation functions evolve slowly using some non-
linear optimization strategy.

• The layers of a RBF network perform different tasks.

• It is reasonable to use different optimization techniques for the hidden
and output layers.

• Learning strategies for the RBF networks differ in the method used for
specifying the centers of the RBF network.

• In Haykin’s book, four approaches for selecting the centers are repre-
sented. We discuss the first two of them.

2

1. Fixed Centers Selected at Random

• The simplest approach is to assume fixed radial-basis functions.

• The locations of the centers may be chosen randomly from the training
data set.

• This is a sensible approach provided that the training data are repre-
sentative for the problem.

• The radial-basis functions are typically chosen to be isotropic Gaussian
functions:

G(‖ x− ti ‖) = exp

(
− m1

d2
max

‖ x− ti ‖2

)
i = 1, 2, . . . ,m1 where m1 is the number of centers (basis functions).

• dmax is the maximum distance between the chosen centers.

3

• In effect, the standard deviation (width) of all the Gaussians is fixed
at

σ =
dmax

(2m1)1/2

• This choice ensures that the individual radial-basis functions are not
too peaked or too flat.

• In this approach, only the linear weights of the output layer must be
learned.

• A straightforward procedure for estimating the weights is to use the
pseudoinverse method:

w = G+d = (GTG)−1GTd

• Here G+ is the pseudoinverse of the matrix G.

• The element gji of the matrix G is defined by

gji = exp
(
−m1

d2
‖ xj − ti ‖2

)
i = 1, 2, . . . ,m1, j = 1, 2, . . . , N , where xj is the jth training vector.

4

• Pseudoinverses can be computed efficiently in a numerically robust way
using the singular-value decomposition.

• Let G be a general real N ×M matrix.

• The singular-value decomposition of G is defined by the expansion

UTGV = Σ

Σ = diag(σ1, σ2, . . . , σK), K = min(M, N)

is a diagonal matrix containing the singular values of G.

• The column vectors ui of the orthogonal matrix

U = [u1,u2, . . . ,uN]

are called the left singular vectors of G.

• The column vectors vi of the orthogonal matrix

V = [v1,v2, . . . ,vM]

are the right singular vectors of G.
5

• Using singular-value decomposition theory, the M ×N pseudoinverse
of matrix G is defined by

G+ = VΣ+UT

• Here Σ+ is itself an N ×N diagonal matrix defined by

Σ+ = diag

(
1

σ1

,
1

σ2

, . . . ,
1

σK

, 0, . . . , 0

)
• Efficient algorithms for computing pseudoinverses and pseudoinverse

theory can be found in textbooks of linear algebra and numerical ana-
lysis.

• Random selection of centers is relatively insensitive to the use of regu-
larization.

• Random selection of centers from a large training set is probably a kind
of regularization method itself.

6

2. Self-Organized Selection of Centers

• The main problem with choosing fixed centers randomly: requires pos-
sibly a large training set for satisfactory performance.

• This limitation can be overcome by using a hybrid learning process
consisting of two different stages:

1. Self-organized learning. Appropriate locations of centers of the
radial-basis functions are estimated in this stage.

2. Supervised learning. The linear weights of the output layer are
determined in this stage.

• It is preferable to learn these stages adaptively (iteratively).

• The self-organized learning stage is realized using some suitable clus-
tering algorithm.

• This partitions the training data into homogenous groups.

• A basic clustering algorithm: k-means clustering.
7

• It places the centers of radial-basis functions in only those regions of
the input space where significant amount of the data are present.

• Assume that m1 is the number of radial-basis functions.

• Determination of a suitable value of m1 may require experimentation.

• Let us denote the centers of the radial-basis functions at step n by
t1(n), . . . , tm1(n).

8

K-means clustering algorithm:

1. Initialization. Choose different random values tk(0) for the initial centers.

2. Sampling. Take a sample vector x(n) from the input space for the iteration n.

3. Similarity matching. Let k(x) denote the index of best matching (winning) center
for the sample vector x.

- At iteration n, k(x) is found from the minimum Euclidean distance criterion

k(x) = arg min ‖ x(n)− tk(n) ‖, k = 1, 2, . . . ,m1

4. Updating. Update the centers of the radial basis functions using the rule

tk(n + 1) = tk(n) + η[x(n)− tk(n)], k = k(x)
tk(n + 1) = tk(n), otherwise

5. Continuation. Increment n by 1 and continue the procedure from step 2 until
convergence.

9

• The k-means clustering algorithm is a special case of the self-organizing
map (SOM) to be discussed in Chapter 9.

• SOM or other more sophisticated versions of k-means clustering can
also be used to determine the centers of the radial-basis functions.

• Assume now that the centers have been learned using some method.

• The weights of the output layer can be estimated for example using
the simple adaptive LMS algorithm discussed in Chapter 3.

• The input vector to the LMS algorithm is the output vector of the
hidden RBF layer.

10

5.14 Computer Experiment: Pattern Classification

• The classification problem is described in Section 4.8.

• Now the same problem is solved using RBF networks instead of MLP
networks.

• Two overlapping Gaussian distributions corresponding to the classes
C1 and C2.

• Regularized RBF networks based on strict interpolation are used for
designing the classifier.

• The decision rule used earlier with MLP is used also here:
Classify x to the class Ck if

Fk(x) > Fj(x) for all j 6= k

• Regularized RBF networks are able to estimate the optimal Bayesian
classifier (posterior probabilities).

• Provided that binary-valued desired vectors are used; see Section 4.7.
11

• The weight vector w is computed for different values of the regulariza-
tion parameter λ from the formula

w = (G + λI)−1d

• The number of centers (basis functions) was either 20 or 100.

• 50 independent trials for each value of λ.

• Mean of probability of correct classification for varying regularization
parameter

Centers Regularization parameter λ
m1 0 0.1 1 10 100 1000
20 57.49 72.42 74.42 73.80 72.46 72.14
100 50.58 77.03 77.72 77.87 76.47 75.33

12

a b

• Examples of best and worst performing networks are shown in Figures
(a) and (b) for the case of 100 centers and λ = 10.

13

• Conclusions on simulations:

1. Regularization improves dramatically the classification performance.

2. The value of the regularization parameter does not affect much
the performance if λ ≥ 0.1.

3. Increasing the number of centers (radial-basis functions) from 20
to 100 improves the performance by about 4.5%.

14

9. Self-Organizing Maps

9.1 Introduction

• Self-organizing maps are based on competitive learning discussed briefly
in Section 2.5.

• Recall winner-takes-all principle: only one output neuron (winner of
competition) is updated at a time.

• In a self-organizing map (SOM), the neurons are placed at the nodes
of a usually two-dimensional lattice.

• During the competitive learning process, the neurons become sensitive
to different input features.

• Neurons spatially close to each other describe features relatively closer
to each other.

• In effect, SOM forms a nonlinear mapping from the input space to the
two-dimensional lattice.

15

• The map tries to describe the intrinsic properties of the data as well
as possible.

• Self-organizing map is an unsupervised learning method in its basic
form.

• The development of self-organizing maps was motivated by topological
properties of the human brain.

• They were developed at Helsinki University of Technology by Acade-
mian Teuvo Kohonen (1982).

• In the Laboratory of Computer and Information Science at HUT, both
applications and theoretical properties of SOMs are still studied fairly
extensively.

16

9.2 Two Basic Feature-Mapping Models

• Human brains are dominated by the cerebral cortex.

• It is probably the most complex known structure in the universe.

• The cerebral cortex forms a topographic mapping with the following
properties:

– At each stage of representation, each incoming piece of informa-
tion is kept in its proper context.

– Neurons dealing with closely related pieces of information are
close together, having thus short synaptic connections.

• Our interest is to build artificial topographic maps.

• They learn through self-organization in a neurobiologically inspired
manner.

17

• Principle of topographic map formation (Kohonen, 1990):

• The spatial location of an output neuron in a topographic map corres-
ponds to a particular domain or feature of the input data.

• Based on this principle, two different feature-mapping models have
been proposed.

• In both models, the output neurons are arranged in a two-dimensional
lattice.

• Such a topology ensures that each neuron has a set of neighbors.

18

• The models differ in the specification of input patterns.

• The Willshaw-von der Malsburg model tries to explain some observed
neurobiological details.

• There the input dimension is the same as the output dimension.

• However, this model is computationally not so successful.

19

• Kohonen’s model does not explain neurobiological details.

• Anyway, it captures the essential features of computational maps in
the brain.

• Kohonen’s model is also computationally feasible.

• It is more general than the first model because of its ability to compress
the input data.

20

• On the other hand, Kohonen’s model belongs to the class of vector-
coding algorithms.

• SOM optimally places a fixed number of vectors (code words) into a
higher-dimensional space.

• Instead of self-organization, SOM can be derived using a vector quan-
tization approach.

• This approach is motivated by communication-theoretic (data compres-
sion) considerations.

• The remainder of this chapter deals with Kohonen’s self-organizing
map.

21

9.3 Self-Organizing Map

• Principal goals of the self-organizing map (SOM):

• Transform data (input) vectors having an arbitrary dimension into a
two-dimensional map usually.

• Perform the transform adaptively in a topologically ordered fashion.

22

• Two-dimensional lattice of neurons used commonly as the discrete
map.

• Each neuron is connected to all the inputs.

• This network is a feedforward structure with a single two-dimensional
computational layer.

• Sometimes it is sufficient or appropriate to use a one-dimensional SOM.

• All the neurons in the network should be exposed to a sufficient number
of different input patterns.

• This ensures that the self-organizing process has time to mature pro-
perly.

• The learning algorithm for SOM starts by initializing the synaptic
weights.

• Can be done by choosing small random values as the initial weights.

23

• After initialization, three essential processes are used for learning the
self-organizing map.

1. Competition. For each input vector, all the neurons compute their
value of a discriminant function.

- The neuron with largest value wins the competition.

2. Cooperation. The spatial location of the winning neuron deter-
mines the neighborhood where weight vectors are updated.

3. Synaptic Adaptation. The response of the winning neuron to a
similar input pattern is increased by updating its weight vector
suitably.

• In the following, we discuss these stages in more detail.

24

Competitive Process

• Assume that the input vectors x = [x1, x2, . . . , xm]T are selected at
random.

• Each neuron in the network has a synaptic weight vector

wj = [wj1, wj2, . . . , wjm]T , j = 1, 2, . . . , l

• The weight vectors have the same dimension m as the input vectors.

• The total number of neurons and weight vectors is l.

• Task: find the best match of the input vector x with the weight vectors
wj.

• This can be done by computing the inner products wT
j x,

j = 1, 2, . . . , l, and selecting the largest.

• Here the weight vectors wj are assumed to have equal norms (lenghts).

25

• The best matching neuron with the index i(x) defines the center of
topological neighborhood of excited neurons.

• Maximization of the inner product wT
j x is equivalent to minimizing

the Euclidean distance between the vectors x and wj.

• Thus the index of best matching neuron

i(x) = arg min ‖ x(n)−wj ‖, j = 1, 2, . . . , l

• The neuron i above is called the best matching or winning neuron for
the input vector x.

• Depending on the application, the response of SOM can be either:

- The index of the winning neuron (its position in the lattice);
- or the weight vector closest to the input vector.

26

Cooperative Process

• Key question: how to define a neurobiologically correct topological
neighborhood for the winning neuron?

• It is reasonable to make the neighborhood around the winning neuron
i to decay smoothly with lateral distance.

• Let hj,i denote the topological neighborhood centered on the winning
neuron i.

• The index j denotes a typical neuron in this neighborhood.

• Let dj,i denote the lateral distance between winning neuron i and exci-
ted neuron j.

• The neighborhood hj,i is assumed to be a unimodal function of the
lateral distance dj,i.

27

• It satisfies two distinct requirements:

– The topological neighborhood hj,i is symmetric about its maxi-
mum point.

This is the winning neuron with zero distance dj,i = 0.

– The amplitude of hj,i decreases monotonically with increasing dis-
tance dj,i.

hj,i → 0 when dj,i → ∞; this is a necessary condition for con-
vergence.

• A typical choice of hj,i is the Gaussian function

hj,i(x) = exp

(
−

d2
j,i

2σ2

)
• Translation (and rotation) invariant.

• The “standard deviation” σ defines the effective width of the topolo-
gical neighborhood

28

2σ should be 2σ

• The spherical Gaussian neighborhood is biologically more appropriate
than a rectangular neighborhood.

• It also makes the SOM algorithm converge faster.

• The neighborhood hj,i must depend on the distance of neurons in the
output space rather than in the original input space.

• For one-dimensional map, dj,i is the integer | j − i |.
29

• Another unique feature of the SOM algorithm: the size of the topolo-
gical neighborhood shrinks with time.

• This is realized by decreasing the width σ of the neighborhood hj,i

with time.

• A popular choice is exponential decay with discrete time n:

σ(n) = σ0 exp

(
− n

τ1

)
, n = 0, 1, 2, . . .

• Here σ0 is the initial value of the width σ and τ1 is a time constant.

• This yields the shrinking topological neighborhood function

hj,i(x)(n) = exp

(
−

d2
j,i

2σ2(n)

)

30

Adaptive Process

• Self-organization is achieved by adapting the weight vectors of the
neurons suitably as a response to shown input vectors.

• Hebbian learning (Section 2.4) is useful for associative learning.

∆wkj(n) = ηyk(n)xj(n)

• However, the basic Hebbian rule alone is unsatisfactory for unsupervi-
sed learning or self-organization.

• Reason: all the synaptic weights are driven into saturation.

• This problem can be overcome by adding a forgetting term g(yj)wj.

• Here g(yj) is some positive scalar function of the response yj of the
neuron j.

31

• The only requirement imposed on the function g(yj):
The constant term in the Taylor series expansion of g(yj) is zero.

• This yields the condition

g(yj) = 0 for yj = 0

• Then the change in the weight vector of neuron j in the lattice takes
the form

∆wj = ηyjx− g(yj)wj

• The first term ηyjx is the Hebbian term.

• η denotes the learning-rate parameter as usual.

• The second term −g(yj)wj is the forgetting term.

• The requirement for g(yj) can be satisfied by choosing

g(yj) = ηyj

32

• Furthermore, the update rule can be simplified by setting

yj = hj,i(x)

• These choices yield the update rule

∆wj = ηhj,i(x)[x−wj]

• In discrete-time formalism, the obtained update rule is

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)[x(n)−wj(n)]

• This rule is applied to all neurons inside the topological neighborhood
of winning neuron i.

• The adaptation rule moves the weight vector wi of the winning neuron
toward the input vector x.

• During adaptation, the weight vectors tend to follow the distribution
of the input vectors due to the neighborhood updating.

33

• Therefore, the SOM algorithm leads to a topological ordering of the
feature map in the input space.

• This means that neurons that are adjacent in the lattice tend to have
similar weight vectors.

• Also the learning-rate parameter η(n) should be made time-varying.

• It should start at an initial value η0, and then gradually decrease with
increasing time n.

• A typical choice: exponential decay

η(n) = η0 exp

(
− n

τ2

)
, n = 0, 1, 2, . . .

where τ2 is another time constant of the SOM algorithm.

34

Two Phases of the Adaptive Process: Ordering and Convergence

• The SOM algorithm starts from a complete disorder.

• If its parameters are chosen appropriately, it gradually leads to a nice
organized representation of input vectors.

• The adaptation takes place in two phases.

1. Self-organizing or ordering phase.

- The topological ordering of weight vectors takes place here.

- May take 1000 iterations or even more.

- The learning parameter η(n) should decrease slowly from about
0.1 to stay above 0.01 during this phase.

- The neighborhood function hj,i(n) should initially contain al-
most all neurons, and then shrink slowly with time.

- More detailed instructions are given in Haykin’s book, pp. 452-
453.

35

2. Convergence phase.

- This phase is needed to fine tune the feature map.

- The number of iterations here should be at least 500 times the
number of neurons in the lattice.

- The learning parameter η(n) should be kept as a small constant
(0.01 typically) for achieving a good statistical accuracy.

- The neighborhood function should contain only the nearest
neighbors of the winning neuron.

36

	Learning Strategies
	Computer Experiment: Pattern Classification
	Self-Organizing Maps
	Introduction
	Two Basic Feature-Mapping Models
	Self-Organizing Map

