Function approximation using RBF network

F(x;) = ZUW(H x; —t ||)

j=1...N, m; =10, N =25
e 10 basis functions and 25 data points.

e Basis function centers are plotted with circles and data points with
asterisks.

5.13 Learning Strategies

In RBF networks, learning proceeds differently for different layers.

The linear output layer's weights are learned rapidly through a linear
optimization strategy.

The hidden layer's activation functions evolve slowly using some non-
linear optimization strategy.

The layers of a RBF network perform different tasks.

It is reasonable to use different optimization techniques for the hidden
and output layers.

Learning strategies for the RBF networks differ in the method used for
specifying the centers of the RBF network.

In Haykin's book, four approaches for selecting the centers are repre-
sented. We discuss the first two of them.

1. Fixed Centers Selected at Random

e The simplest approach is to assume fixed radial-basis functions.

e The locations of the centers may be chosen randomly from the training
data set.

e This is a sensible approach provided that the training data are repre-
sentative for the problem.

e The radial-basis functions are typically chosen to be isotropic Gaussian
functions:

m
Glllx—t 1) =exp (-5 1 x =t)

max

i=1,2,...,m; where my is the number of centers (basis functions).

® d,,.. is the maximum distance between the chosen centers.

In effect, the standard deviation (width) of all the Gaussians is fixed
at

dmax

(2mq)1/?

This choice ensures that the individual radial-basis functions are not
too peaked or too flat.

g =

In this approach, only the linear weights of the output layer must be
learned.

A straightforward procedure for estimating the weights is to use the
pseudoinverse method:

w=G"d=(G'G)'G"d
Here G* is the pseudoinverse of the matrix G.
The element gj; of the matrix G is defined by
gji = €xXp (‘% | x; —ti Hz)

t=1,2,...,mq, j=1,2,..., N, where x; is the jth training vector.

Pseudoinverses can be computed efficiently in a numerically robust way
using the singular-value decomposition.

Let G be a general real N x M matrix.
The singular-value decomposition of G is defined by the expansion
U'GV =%
3 = diag(oy,09,...,0k), K =min(M,N)

is a diagonal matrix containing the singular values of G.
The column vectors u; of the orthogonal matrix
U = [u,uy,...,uy]
are called the left singular vectors of G.
The column vectors v; of the orthogonal matrix
V =|vy,va, ..., vyl

are the right singular vectors of G.
5

Using singular-value decomposition theory, the M x N pseudoinverse
of matrix G is defined by

Gt =vxtu?

Here X% is itself an NV x N diagonal matrix defined by

1 1 1
E+:diag<—,— ...,—,0,...,0)

01 02’ OK

Efficient algorithms for computing pseudoinverses and pseudoinverse
theory can be found in textbooks of linear algebra and numerical ana-
lysis.

Random selection of centers is relatively insensitive to the use of regu-
larization.

Random selection of centers from a large training set is probably a kind
of regularization method itself.

2. Self-Organized Selection of Centers

The main problem with choosing fixed centers randomly: requires pos-
sibly a large training set for satisfactory performance.

This limitation can be overcome by using a hybrid learning process
consisting of two different stages:

1. Self-organized learning. Appropriate locations of centers of the
radial-basis functions are estimated in this stage.

2. Supervised learning. The linear weights of the output layer are
determined in this stage.

It is preferable to learn these stages adaptively (iteratively).

The self-organized learning stage is realized using some suitable clus-
tering algorithm.

This partitions the training data into homogenous groups.

A basic clustering algorithm: k-means clustering.
7

e It places the centers of radial-basis functions in only those regions of
the input space where significant amount of the data are present.

e Assume that m; is the number of radial-basis functions.

Determination of a suitable value of m; may require experimentation.

Let us denote the centers of the radial-basis functions at step n by
t1(n), ..., tm, (n).

K-means clustering algorithm:

1. Initialization. Choose different random values t(0) for the initial centers.
2. Sampling. Take a sample vector x(n) from the input space for the iteration n.

3. Similarity matching. Let k(x) denote the index of best matching (winning) center
for the sample vector x.

- At iteration n, k(x) is found from the minimum Euclidean distance criterion
k(x) = argmin || x(n)—tr(n) ||, k=1,2,...,my
4. Updating. Update the centers of the radial basis functions using the rule

te(n+1) = te(n) +nlx(n) —tr(n)], k=kx)
tr(n+1) = tg(n), otherwise

5. Continuation. Increment n by 1 and continue the procedure from step 2 until
convergence.

The k-means clustering algorithm is a special case of the self-organizing
map (SOM) to be discussed in Chapter 9.

SOM or other more sophisticated versions of k-means clustering can
also be used to determine the centers of the radial-basis functions.

Assume now that the centers have been learned using some method.

The weights of the output layer can be estimated for example using
the simple adaptive LMS algorithm discussed in Chapter 3.

The input vector to the LMS algorithm is the output vector of the
hidden RBF layer.

10

5.14 Computer Experiment: Pattern Classification

The classification problem is described in Section 4.8.

Now the same problem is solved using RBF networks instead of MLP
networks.

Two overlapping Gaussian distributions corresponding to the classes
Cl and CQ.

Regularized RBF networks based on strict interpolation are used for
designing the classifier.

The decision rule used earlier with MLP is used also here:
Classify x to the class Cy, if

Fi(x) > F;(x) for all j # k

Regularized RBF networks are able to estimate the optimal Bayesian
classifier (posterior probabilities).

Provided that binary-valued desired vectors are used; see Section 4.7.
11

The weight vector w is computed for different values of the regulariza-

tion parameter A from the formula

The number of centers (basis functions) was either 20 or 100.

w=(G+)"'d

50 independent trials for each value of .

Mean of probability of correct classification for varying regularization
parameter
Centers Regularization parameter A
my 0 0.1 1 10 100 1000
20 57.49 7242 74.42 7380 7246 7214

100

50.58 77.03 7772 T77.87 76.47 7533

12

S . . . ;
4t 1 4T 1
sl 1 I 1
2+ 1 2 !
1t 1 Lr 1
£ o0f 1 & i 1
N . =G 7]
Sl 5 -2t 7
-3} 5 -3+ 2]
241 E Ak 1
ST 3 0 2 ¢« s R TSN
a b

e Examples of best and worst performing networks are shown in Figures
(a) and (b) for the case of 100 centers and A\ = 10.

13

e Conclusions on simulations:

1. Regularization improves dramatically the classification performance.

2. The value of the regularization parameter does not affect much
the performance if A > 0.1.

3. Increasing the number of centers (radial-basis functions) from 20
to 100 improves the performance by about 4.5%.

14

9.

9.1

Self-Organizing Maps

Introduction

Self-organizing maps are based on competitive learning discussed briefly
in Section 2.5.

Recall winner-takes-all principle: only one output neuron (winner of
competition) is updated at a time.

In a self-organizing map (SOM), the neurons are placed at the nodes
of a usually two-dimensional lattice.

During the competitive learning process, the neurons become sensitive
to different input features.

Neurons spatially close to each other describe features relatively closer
to each other.

In effect, SOM forms a nonlinear mapping from the input space to the

two-dimensional lattice.
15

The map tries to describe the intrinsic properties of the data as well
as possible.

Self-organizing map is an unsupervised learning method in its basic
form.

The development of self-organizing maps was motivated by topological
properties of the human brain.

They were developed at Helsinki University of Technology by Acade-
mian Teuvo Kohonen (1982).

In the Laboratory of Computer and Information Science at HUT, both
applications and theoretical properties of SOMs are still studied fairly
extensively.

16

9.2 Two Basic Feature-Mapping Models
e Human brains are dominated by the cerebral cortex.
e It is probably the most complex known structure in the universe.

e The cerebral cortex forms a topographic mapping with the following
properties:

— At each stage of representation, each incoming piece of informa-
tion is kept in its proper context.

— Neurons dealing with closely related pieces of information are
close together, having thus short synaptic connections.

e Our interest is to build artificial topographic maps.

e They learn through self-organization in a neurobiologically inspired
manner.

17

e Principle of topographic map formation (Kohonen, 1990):

e The spatial location of an output neuron in a topographic map corres-
ponds to a particular domain or feature of the input data.

e Based on this principle, two different feature-mapping models have
been proposed.

Winning
neuron

Two-dimensional array
of postsynaptic neurons

Winning
Bundle of synaptic neuron
connections. (There is a
similar bundle of synaptic
connections originating from
other presynaptic neurons.)

Two-dimensional array
of postsynaptic neurons

Activated
neuron

Bundle of synaptic
connections.

Input

e In both models, the output neurons are arranged in a two-dimensional
lattice.

e Such a topology ensures that each neuron has a set of neighbors.
18

e The models differ in the specification of input patterns.

A

Activated
neuron

Two-dimensional array
of postsynaptic neurons

Bundle of synaptic
connections. (There is a
similar bundle of synaptic
connections originating from
other presynaptic neurons.)

e The Willshaw-von der Malsburg model tries to explain some observed
neurobiological details.

e There the input dimension is the same as the output dimension.

e However, this model is computationally not so successful.
19

Winning
neuron
Two-dimensional array
CK of postsynaptic neurons

Bundle of synaptic
connections,

Input

Kohonen's model does not explain neurobiological details.

Anyway, it captures the essential features of computational maps in
the brain.

Kohonen's model is also computationally feasible.

It is more general than the first model because of its ability to compress
the input data.
20

On the other hand, Kohonen's model belongs to the class of vector-
coding algorithms.

SOM optimally places a fixed number of vectors (code words) into a
higher-dimensional space.

Instead of self-organization, SOM can be derived using a vector quan-
tization approach.

This approach is motivated by communication-theoretic (data compres-
sion) considerations.

The remainder of this chapter deals with Kohonen's self-organizing
map.

21

9.3 Self-Organizing Map
e Principal goals of the self-organizing map (SOM):

e Transform data (input) vectors having an arbitrary dimension into a
two-dimensional map usually.

e Perform the transform adaptively in a topologically ordered fashion.

—0

—-0 .

-0
Layer
of
source
nodes

i
VY
VYWY
VYWY

22

Two-dimensional lattice of neurons used commonly as the discrete
map.

Each neuron is connected to all the inputs.

This network is a feedforward structure with a single two-dimensional
computational layer.

Sometimes it is sufficient or appropriate to use a one-dimensional SOM.

All the neurons in the network should be exposed to a sufficient number
of different input patterns.

This ensures that the self-organizing process has time to mature pro-
perly.

The learning algorithm for SOM starts by initializing the synaptic
weights.

Can be done by choosing small random values as the initial weights.

23

e After initialization, three essential processes are used for learning the
self-organizing map.

1. Competition. For each input vector, all the neurons compute their
value of a discriminant function.

- The neuron with largest value wins the competition.

2. Cooperation. The spatial location of the winning neuron deter-
mines the neighborhood where weight vectors are updated.

3. Synaptic Adaptation. The response of the winning neuron to a
similar input pattern is increased by updating its weight vector
suitably.

e In the following, we discuss these stages in more detail.

24

Competitive Process

T

e Assume that the input vectors x = [z1,x9,...,%,,]" are selected at

random.

e Each neuron in the network has a synaptic weight vector

T .
W; = [wjlawﬂw-wwjm] , =12,

e The weight vectors have the same dimension m as the input vectors.
e The total number of neurons and weight vectors is [.

e Task: find the best match of the input vector x with the weight vectors
W]'.

e This can be done by computing the inner products w;fpx,
7 =1,2,...,1, and selecting the largest.

e Here the weight vectors w; are assumed to have equal norms (lenghts).

25

The best matching neuron with the index i(x) defines the center of
topological neighborhood of excited neurons.

Maximization of the inner product ijx is equivalent to minimizing
the Euclidean distance between the vectors x and w;.

Thus the index of best matching neuron

i(x) = argmin || x(n)—w; |, j=1,2,...,1
The neuron i above is called the best matching or winning neuron for
the input vector x.

Depending on the application, the response of SOM can be either:

- The index of the winning neuron (its position in the lattice);
- or the weight vector closest to the input vector.

26

Cooperative Process

e Key question: how to define a neurobiologically correct topological
neighborhood for the winning neuron?

e |t is reasonable to make the neighborhood around the winning neuron
7 to decay smoothly with lateral distance.

e Let h;; denote the topological neighborhood centered on the winning
neuron <.

e The index j denotes a typical neuron in this neighborhood.

e Let d;; denote the lateral distance between winning neuron % and exci-
ted neuron j.

e The neighborhood ©;; is assumed to be a unimodal function of the
lateral distance d; ;.

27

e It satisfies two distinct requirements:

— The topological neighborhood h;; is symmetric about its maxi-
mum point.

This is the winning neuron with zero distance d;; = 0.

— The amplitude of h;; decreases monotonically with increasing dis-
tance d; ;.
hj; — 0 when d;; — oo; this is a necessary condition for con-
vergence.

e A typical choice of h;; is the Gaussian function

2
hjix) =exp | — e
3,4(x) p 20.2

e Translation (and rotation) invariant.

e The “standard deviation” o defines the effective width of the topolo-
gical neighborhood

28

0 " 929 should be 20

The spherical Gaussian neighborhood is biologically more appropriate
than a rectangular neighborhood.

It also makes the SOM algorithm converge faster.

The neighborhood 5;; must depend on the distance of neurons in the
output space rather than in the original input space.

For one-dimensional map, d;; is the integer | j — i |.

Another unique feature of the SOM algorithm: the size of the topolo-
gical neighborhood shrinks with time.

This is realized by decreasing the width o of the neighborhood £ ;
with time.

A popular choice is exponential decay with discrete time n:

n
o(n) = ogexp (——), n=0,1,2,...

T

Here oy is the initial value of the width ¢ and 7, is a time constant.

This yields the shrinking topological neighborhood function

B2
hjix)(n) = exp (—205@)

30

Adaptive Process

e Self-organization is achieved by adapting the weight vectors of the
neurons suitably as a response to shown input vectors.

e Hebbian learning (Section 2.4) is useful for associative learning.
Awgj(n) = nyr(n)z;(n)

e However, the basic Hebbian rule alone is unsatisfactory for unsupervi-
sed learning or self-organization.

e Reason: all the synaptic weights are driven into saturation.
e This problem can be overcome by adding a forgetting term g(y;)w;.

e Here g(y,) is some positive scalar function of the response y; of the
neuron j.

31

The only requirement imposed on the function g(y,):
The constant term in the Taylor series expansion of ¢(y;) is zero.

This yields the condition
9(y;) = 0 for y; =0

Then the change in the weight vector of neuron j in the lattice takes
the form

Aw; = ny;x — g(y;)w;
The first term ny;x is the Hebbian term.
7 denotes the learning-rate parameter as usual.
The second term —g(y;)w; is the forgetting term.

The requirement for g(y;) can be satisfied by choosing
9(y;) = ny;

32

Furthermore, the update rule can be simplified by setting
Yi = o
These choices yield the update rule

Aw; = nh;ix)[x — W]

In discrete-time formalism, the obtained update rule is
wi(n+1) = w;(n) +n(n)hjix)(n)[x(n) — w;(n)]

This rule is applied to all neurons inside the topological neighborhood
of winning neuron .

The adaptation rule moves the weight vector w; of the winning neuron
toward the input vector x.

During adaptation, the weight vectors tend to follow the distribution
of the input vectors due to the neighborhood updating.
33

Therefore, the SOM algorithm leads to a topological ordering of the
feature map in the input space.

This means that neurons that are adjacent in the lattice tend to have
similar weight vectors.

Also the learning-rate parameter 77(n) should be made time-varying.

It should start at an initial value 79, and then gradually decrease with
increasing time n.

A typical choice: exponential decay

where 5 is another time constant of the SOM algorithm.

34

Two Phases of the Adaptive Process: Ordering and Convergence

e The SOM algorithm starts from a complete disorder.

e If its parameters are chosen appropriately, it gradually leads to a nice
organized representation of input vectors.

e The adaptation takes place in two phases.

1. Self-organizing or ordering phase.

- The topological ordering of weight vectors takes place here.
- May take 1000 iterations or even more.

- The learning parameter n(n) should decrease slowly from about
0.1 to stay above 0.01 during this phase.

- The neighborhood function h;;(n) should initially contain al-
most all neurons, and then shrink slowly with time.

- More detailed instructions are given in Haykin's book, pp. 452-
453.

35

. Convergence phase.

- This phase is needed to fine tune the feature map.

- The number of iterations here should be at least 500 times the
number of neurons in the lattice.

- The learning parameter 7(n) should be kept as a small constant
(0.01 typically) for achieving a good statistical accuracy.

- The neighborhood function should contain only the nearest
neighbors of the winning neuron.

36

	Learning Strategies
	Computer Experiment: Pattern Classification
	Self-Organizing Maps
	Introduction
	Two Basic Feature-Mapping Models
	Self-Organizing Map

