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1. Preface

• Artificial Neural Network:
- consists of simple, adaptive processing units, called often neurons
- the neurons are interconnected, forming a large network
- parallel computation, often in layers
- nonlinearities are used in computations

• Important property of neural networks: learning from input data.
- with teacher (supervised learning)
- without teacher (unsupervised learning)

• Artificial neural networks have their roots in:
- neuroscience
- mathematics and statistics
- computer science
- engineering

• Neural computing was inspired by computing in human brains
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• Application areas of neural networks:

– modeling

– time series processing

– pattern recognition

– signal processing

– automatic control

• Computational intelligence

– Neural networks

– Fuzzy systems

– Evolutionary computing

∗ Genetic algorithms
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Neural computing has many application areas in economics and management,
because a lot of data which can be used in training of the neural network
have been saved in databases.

- age

- position

- family

- debts

-

Inputs Analysis:

- consumer habits

- creditworthiness

-

Principle of neural modeling. The inputs are known or they can be mea-
sured. The behavior of outputs is investigated when input varies.

All information has to be converted into vector form.
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2. Contents of Haykin’s book

1. Introduction

2. Learning Processes

3. Single Layer Perceptrons

4. Multilayer Perceptrons

5. Radial-Basis Function
Networks

6. Support Vector Machines

7. Committee Machines

8. Principal Components Analysis

9. Self-Organizing Maps

10. Information-theoretic Models

11. Stochastic Machines and Their
Approximates Rooted in Statis-
tical Mechanics

12. Neurodynamic Programming

13. Temporal Processing Using Feed-
forward Networks

14. Neurodynamics

15. Dynamically Driven Recurrent
Networks

The boldfaced chapters will be discussed in this course
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1. Introduction

Neural networks resemble the brain in
two respects:

1. The network acquires knowledge
from its environment using a
learning process (algorithm)

2. Synaptic weights, which
are interneuron connection
strenghts, are used to store the
learned information.

Fully connected 10-4-2 feedforward
network with 10 source (input) nodes,
4 hidden neurons, and 2 output neu-
rons.
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1.1 Benefits of neural networks

1. Nonlinearity
- Allows modeling of nonlinear functions and processes.
- Nonlinearity is distributed through the network.
- Each neuron typically has a nonlinear output.
- Using nonlinearities has drawbacks, too: local minima, difficult ana-
lysis, no closed-form easy linear solutions.

2. Input-Output Mapping
- In supervised learning, the input-output mapping is learned from trai-
ning data.
- For example known prototypes in classification.
- Typically, some statistical criterion is used.
- The synaptic weights (free parameters) are modified to optimize the
criterion.
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3. Adaptivity
- Weights (parameters) can be retrained with new data.
- The network can adapt to nonstationary environment.
- However, the changes must be slow enough.

4. Evidential Response

5. Contextual Information

6. Fault Tolerance

7. VLSI Implementability

8. Uniformity of Analysis and Design

9. Neurobiological Analogy
- Human brains are fast, powerful, fault tolerant, and use massively
parallel computing.
- Neurobiologists try to explain the operation of human brains using
artificial neural networks.
- Engineers use neural computation principles for solving complex
problems.
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1.3 Models of a neuron

A neuron is the fundamental information processing unit of a neural network.
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The neuron model consists of three (or four) basic elements
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1. A set of synapses or connecting
links:
- Characterized by weights
(strengths).
- Let xj denote a signal at the input
of synapse j.
- When connected to neuron k, xj is
multiplied by the synaptic weight wkj.
- weights are usually real numbers.
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2. An adder (linear combiner):
- Sums the weighted inputs wkjxj.

3. An activation function:
- Applied to the output of a neuron, limiting its value.
- Typically a nonlinear function.
- Called also squashing function.

4. Sometimes a neuron includes an externally applied bias term bk.
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Mathematical equations describing neuron k:

uk =
m∑

j=1

wkjxj, (1)

yk = ϕ(uk + bk). (2)

Here:
- uk is the linear combiner output;
- ϕ(.) is the activation function;
- yk is the output signal of the neuron;
- x1, x2, . . . , xm are the m input signals;
- wk1, wk2, . . . , wkm are the respective m synaptic weights.

A mathematically equivalent representation:
- Add an extra synapse with input x0 = +1 and weight wk0 = bk.
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- The equations are now slightly simpler:

vk =
m∑

j=0

wkjxj, (3)

yk = ϕ(vk). (4)
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Typical activation functions

1. Threshold function φ(v) = 1, v ≥ 0; φ(v) = 0, if v < 0

2. Piecewise-linear function: Saturates at 1 and 0
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3. Sigmoid function

• Most commonly used in neural networks

• The figure shows the logistic function defined by
φ(v) = 1

1+e−av

• The slope parameter a is important

• When a → ∞, the logistic sigmoid approaches the thres-
hold function (1.)

• Continuous, balance between linearity and nonlinearity

• φ(v) = tanh(av) allows the activation function to have
negative values
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Stochastic model of a neuron

• The activation function of the McCulloch-Pitts early neuronal model
(1943) is the threshold function.

• The neuron is permitted to reside in only two states, say x = +1 and
x = −1.

• In the stochastic model, a neuron fires (switches its state x) according
to a probability.

• The state is x = 1 with probability P (v)
The state is x = −1 with probability 1− P (v)

• A standard choice for the probability is the sigmoid type function

P (v) =
1

1 + exp(−v/T )

• Here T is a parameter controlling the uncertainty in firing, called pseu-
dotemperature.
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1.4 Neural networks as directed graphs

• Neural networks can be represented in terms of signal-flow graphs.

• Nonlinearities appearing in a neural network cause that two different
types of links (branches) can appear:

1. Synaptic links having a linear input-output relation: yk = wkjxj.

2. Activation links with a nonlinear input-output relation:
yk = ϕ(xj).
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Signal-flow graphs

• Signal-flow graph consists of directed branches

• The branches sum up in nodes

• Each node j has a signal xj

• Branch kj starts from node j and ends at node k; wkj is the synaptic
weight corresponding the strengthening or damping of signal
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• Three basic rules:
– Rule 1.

Signal flows only to the direction of ar-
row. Signal strength will be multiplied
with strengthening factor wkj.

– Rule 2.
Node signal = Sum of incoming sig-
nals from branches

– Rule 3.
Node signal will be transmitted to
each outgoing branch; strengthening
factors are independent of node signal
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Example: Signal flow graph of linear combination

vk =
M∑

j=0

wkjxj (5)
• coefficients wk0, wk1 . . .wkM are

weights

• x0, x1 . . .xM are input signals

• by defining
wk = [wk0, wk1 . . . wkM ]T and
x = [x0, x1 . . . xM ]T

vk = wk
Tx = xTwk (6)

• Thus rule 1 is divided into 2 parts, while the basic rules 2 and 3 for
handling signal-flow graphs remain unchanged.

• In Haykin’s book, a mathematical definition of a neural network as a
directed graph is represented on page 17.
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• Often the signal flow inside a neuron is not considered.

• This leads to so-called architectural graph, which describes the layout
of a neural network.

• This is the typical representation showing the structure of a neural
network.
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1.5 Feedback

• Feedback: Output of an element of a dynamic system affects to the
input of this element.

• Thus in a feedback system there are closed paths.

• Feedback appears almost everywhere in natural nervous systems.

• Important in recurrent networks (Chapter 15 in Haykin).

• Signal-flow graph of a single-loop feedback system
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• The system is discrete-time and
linear.

• Relationships between the input signal xj(n), internal signal x′
j(n),

and output signal yk(n):

yk(n) = A[x′
j(n)],

x′
j(n) = xj(n) + B[yk(n)]

where A and B are linear operators.

• Eliminating the internal signal x′
j(n) yields

yk(n) =
A

1− AB
[xj(n)].

Here A/(1−AB) is called the closed-loop operator of the system, and
AB the open-loop operator.
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• Stability is a major issue in feedback systems.

• If the feedback terms are too strong, the system may diverge or become
unstable.

• An example is given in Haykin, pp. 19-20.

• Stability of linear feedback systems (IIR filters) is studied in digital
signal processing.

• Feedback systems have usually a fading, infinite memory.

• The output depends on all the previous samples, but usually the less
the older the samples are.

• Studying the stability and dynamic behavior of feedback (recurrent)
neural networks is complicated because of nonlinearities.
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1.6 Network Architectures

• The structure of a neural network is closely related with the learning
algorithm used to train the network.

• Learning algorithms are classified in chapter 2 of Haykin.

• Different learning algorithms are discussed in subsequent chapters.

• There are three fundamentally different classes of network architectu-
res.
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Single-Layer Feedforward Networks

• The simplest form of neural networks.

• The input layer of source nodes projects onto an output layer of
neurons (computation nodes).

• The network is strictly a feedforward or acyclic type, because there
is no feedback.

• Such a network is called a single-layer network.
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• A single-layer network with four nodes in both the input and output
layers.

• The input layer is not counted as a layer because no computation is
performed there.
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Multilayer Feedforward Networks

• In a multilayer network, there is one or more hidden layers.

• Their computation nodes are called hidden neurons or hidden units.

• The hidden neurons can extract higher-order statistics and acquire
more global information.

• Typically the input signals of a layer consist of the output signals of
the preceding layer only.
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• a 9-4-2 feedforward network with 9 source (input) nodes, 4 hidden
neurons, and 2 output neurons.

Hidden
layer

OutputInput
layerlayer

• The network is fully connected: all the nodes between subsequent
layers are connected.
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Recurrent Networks

• A recurrent neural network
has at least one feedback loop.

• In a feedforward network there
are no feedback loops.

• Recurrent network with:
- No self-feedback loops to the
“own” neuron.
- No hidden neurons.
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• Another recurrent network which has hidden neurons.

• The feedback loops have a profound impact on the learning capability
and performance of the network.

• The unit-delay elements
result in a nonlinear dy-
namical behavior if the
network contains nonli-
near elements.
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1.7 Knowledge Representation

• Definition: Knowledge refers to stored information or models used by
a person or machine to interpret, predict, and appropriately respond to
the outside world.

• In knowledge representation one must consider:
1. What information is actually made explicit;
2. How the information is physically encoded for subsequent use.

• A well performing neural network must represent the knowledge in an
appropriate way.

• A real design challenge, because there are highly diverse ways of repre-
senting information.

• A major task for a neural network: learn a model of the world (envi-
ronment) where it is working.
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• Two kinds of information about the environment:

1. Prior information = the known facts.

2. Observation (measurements). Usually noisy, but give examples
(prototypes) for training the neural network.

• The examples can be:
- labeled, with a known desired response (target output) to an input
signal.
- unlabeled, consisting of different realizations of the input signal.

• A set of pairs, consisting of an input and the corresponding desired
response, form a set of training data or training sample.
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An example: Handwritten digit recognition

• Input signal: a digital image with black and white pixels.

• Each image represents one of the 10 possible digits.

• The training sample consists of a large variety of hand-written digits
from a real-world situation.

• An appropriate architecture in this case:
- Input signals consist of image pixel values.
- 10 outputs, each corresponding to a digit class.

• Learning: The network is trained using a suitable algorithm with a
subset of examples.

• Generalization: After this, the recognition performance of the network
is tested with data not used in learning.
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Rules for knowledge representation

• The free parameters (synaptic weights and biases) represent knowledge
of the surrounding environment.

• Four general rules for knowledge representation.

• Rule 1. Similar inputs from similar classes should produce similar repre-
sentations inside the network, and they should be classified to the same
category.

• Let xi denote the column vector

xi = [xi1, xi2, . . . , xim]T
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• Typical similarity measures:

1. Reciprocal 1/d(xi,xj) of the Euclidean distance

d(xi,xj) = ‖ xi − xj ‖

between the vectors xi and xj.

2. The inner product xT
i xj between the vectors xi and xj.

- If xi and xj are normalized to unit length, then one can easily
see that

d2(xi,xj) = 2− 2xT
i xj.
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3. A statistical measure: Mahalanobis distance

d2
ij = (xi −mi)

TC−1(xj −mj)

Here mi = E[xi] is the expectation (mean) of the vector (class)
xi, mj is the mean of xj, and

C = E[(xi −mi)(xi −mi)
T ] = E[(xj −mj)(xj −mj)

T ]

is the common covariance matrix of the classes represented by
the vectors xi and xj.

Assumption: difference of the classes is only in their means.

• Rule 2: Items to be categorized as separate classes should be given
widely different representations in the network.

• Rule 3: If a particular feature is important, there should be a large
number of neurons involved in representing it in the network.

• Rule 4: Prior information and invariances should be built into the de-
sign of a neural network.
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• Rule 4 leads to neural networks with a specialized (restricted) struc-
ture.

• Such networks are highly desirable for several reasons:

1. Biological visual and auditory networks are known to be very
specialized.

2. A specialized network has a smaller number of free parameters.
- Easier to train, requires less data, generalizes often better.

3. The rate of information transmission is higher.

4. Cheaper to build than a more general network because of smaller
size.
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How to Build Prior Information into Neural Network Design

• No general technique exists: ad-hoc procedures which are known to
yield useful results are applied instead.

• Two such ad-hoc procedures:

1. Restricting the network architecture through the use of local con-
nections known as receptive fields.

2. Constraining the choice of synaptic weights through the use of
weight-sharing.

• These procedures reduce the number of free parameters to be learned.
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Illustrating the combined use of a receptive field and weight sharing. All four
hidden neurons share the same set of weights for their synaptic connections.
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Bayesian probability theory

• Can be used for incorporating useful prior information

• Usually the data x is assumed to be generated by some model

• A generative model approach

• Prior information on the model parameters is represented by their
prior probability density p(θ)

• Bayes’ rule is then used to compute posterior probabilities:

p(θ|x) =
p(x|θ)p(θ)

p(x)
(7)

where p(x) is the unconditional density function used for normalization
and p(x|θ) is the conditional probability

• Somewhere between classical estimation theory and
neural networks
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• No simple, adaptive processing in each computational neuron

• Differs from classical estimation theory in that distributed nonlinear
network structures are used

• Mathematical analysis is often impossible

• Local minima may be a problem

• But such nonlinear distributed systems may lead to powerful represen-
tations

• Can be used for teaching MLP (multilayer perceptron) or RBF (radial
basis function) networks

• Also in unsupervised manner
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How to Build Invariances into Neural Network Design

• Classification systems must be invariant to certain transformations
depending on the problem.

• For example, a system recognizing objects from images must be inva-
riant to rotations and translations.

• At least three techniques exist for making classifier-type neural networks
invariant to transformations.

1. Invariance by Structure
- Synaptic connections between the neurons are created so that
transformed versions of the same input are forced to produce the
same output.
- Drawback: the number of synaptic connections tends to grow
very large.
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2. Invariance by Training
- The network is trained using different examples of the same
object corresponding to different transformations (for example
rotations).
- Drawbacks: computational load, generalization ability for other
objects.

3. Invariant feature space
- Try to extract features of the data invariant to transformations.
- Use these instead of the original input data.
- Probably the most suitable technique to be used for neural
classifiers.
- Requires prior knowledge on the problem.

• In Haykin’s book, two examples of knowledge representation are briefly
described:
1. A radar system for air surveillance.
2. Biological sonar system of echo-locating bats.

• Optimization of the structure of a neural network is difficult.

44



• Generally, a neural network acquires knowledge about the problem th-
rough training.

• The knowledge is represented by in a distributed and compact form by
the synaptic connection weights.

• Neural networks lack an explanation capability.

• A possible solution: integrate a neural network and artificial intelligence
into a hybrid system.
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