You are not allowed to use a math reference book nor any calculator. Formulae given in a separate paper.

- 1. (6p) Statements, reply either TRUE (T) or FALSE (F). A correct answer +1 points, a wrong -1 points. Reply to as many statements as you want. However, the maximum number of points is six and minimum zero.
 - a) The complex conjugate of the complex number $e^{-13\pi j/4}$ is -0.7071 0.7071j (with the precision given in the formulae paper).
 - b) Signal $x(t) = \cos(10\pi t) + \cos(10t)$ is periodic.
 - c) Sequences $x_1[n] = e^{3\pi j n/8} + e^{-3\pi j n/8}$ and $x_2[n] = \sin(3\pi n/8 + \pi/16)$ have the same fundamental period.
 - d) The output y[n] of a causal LTI system is zero for all n < 0.
 - e) The impulse response of a moving average filter with four points is given by $h[n] = 0.25\delta[n] + 0.25\delta[n-1]$.
 - f) Convolution of sequences $x_1[n] = 3\delta[n] + 2\delta[n-1]$ and $x_2[n] = -\delta[n] + 2\delta[n-1]$ is $x[n] = x_1[n] * x_2[n] = -3\delta[n] + 4\delta[n-1] + 4\delta[n-2].$
 - g) The Fourier transform of the convolution of the signal $x(t) = e^{-t}u(t)$ and the impulse response $h(t) = e^{-5t}u(t)$ is $Y(j\omega) = 1/(5+6j\omega-\omega^2)$
 - h) The inverse transform of the spectrum $Y(j\omega) = e^{-2j\omega}/(1+0.3j\omega)$ is $y(t) = e^{-0.3(t-2)}u(t-2)$
 - j) The Fourier transform $H(j\omega)$ of the impulse response h(t) is computed by multiplying impulse response by $e^{-j\omega t}$.
- 2. (6p) Consider a discrete-time system, whose input-output-relationship is y[n] = 0.5x[n+2] + 0.5x[n+1].
 - a) Is the system linear? Is it time-invariant? Is it causal? Explain briefly.
 - b) If the input is $x[n] = 3\delta[n+1] 2\delta[n]$, what is the output y[n]?
 - c) If the output is $y[n] = \delta[n] \delta[n-2]$, what is the input x[n]?

3. (6p) Non-zero Fourier-series coefficients of a periodic continuous-time signal are $a_{-5} = -10j, a_{-2} = 1, a_2 = 1, a_5 = 10j$. The fundamental angular frequency is $\omega_0 = 20\pi$ (rad/s).

- a) What is the fundamental period of the signal?
- b) What is the representation of the signal x(t) using cosine/sine functions?
- c) Which figure below does represent the signal mostly? Explain briefly. In the x-axis there is time in the interval -0.003 s $\dots 0.103$ s .

4. (6p) The number of students attending exercises weekly during this spring is given in the table below.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6
The number of students weekly:	141	114	93	59	62	47

Design a simple (as simple as possible), causal LTI system, which computes weekly differences of the amount of students in exercises.

- a) Write down the difference equation.
- b) Sketch the block (flow) diagram of the system.
- c) What is the impulse response of the system?
- d) What is the output sequence for an input given in the table above?