Time and Frequency
Characterization
of Signals and Systems

Time and Frequency Characterization
of Signals and Systems

» Frequency-domain characterization of an LTI
system in terms of its frequency response
represents an alternative to thetime-domain
characterization through convolution

* Insystem design and analysis,it isimportantto
relate time-domain and frequency-domain
characteristics and trade-offs
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The Magnitude and Phase Representation
of the Fourier Transform

* The Fourier transformis complexvalued andits red andimaginary
parts can be represented in terms of magnitude andphase

« In continuous-time X (jw) = X (jw) |el@dlX (iw)]
* In discrete-time X (elW) =| X (elW) | el arg[X (¢")]
1 +¥ .
« Fromthesynthesis equation (in CT) x(t) = > OX (jw)e™ dw
-¥

* X(jw) provides adecompositionof thesignal Xt) intoa” sunt of
complex exponentiods at different freuencies
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The Magnitude and Phase Representation
of the Fourier Transform

« Themagnitude |X(w)| describesthebasic frequency content of
thesigna

« Themagnitude X(jw)| provides theinformation about the relative
magnitudes of the complex exponentialsthat makethesignal x(t)

* Thephaseangle arg[X(jw)] doesnot affect the amplitudes of the
individual frequency components, but instead provides information
concerning the relative phasesof the exponentials

« The phase relationships capturedby arg[X(jw)] have asignificant
effect onthe nature of the signa x(t) andthus contain a substantial
amount of information aboutthe signal
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Example

« A ship encountersthe superpostion of three wavetraing
each of which can bemodeled asasinusoidd signd

T -
Wavelength 150 ft 500 ft
Wavelenght 500 ft

=+ = =Wavelength 800 ft

» With fixed magnitudes for thesesinusoids, the amplitude of
their sum may be quitesmall or very large depending on their
relative pheses
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Example: Linear combination of sinusoidal signals
Consider the signal: x(t) =1+%0052pt +cos 4pt +%cos ot
The same sinusoidal componentswith phase shifts

X(0) = L+ 3c05(2Pt +1 1)+ COs(Apt +1 5) + 2 con(@pt +1.)

’\/\/"\/\/"\A\/"\/\/"\/\/“ @ Fi=F=F 0
;m/\m/\f'mm/\m/\ O e
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Example: Linear combination of sinusoidal signals

X(0) =1+2c05(2Pt+1)+cos(4pt +1 )+ Zcos(6pt +13)
© F,=6,F,=27,
() '
/\/\v/\/\v/\

Theresulting signalsdiffer significantly for different
relative phases
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d) F,=12,F,=41,
AT

(
@

The Magnitude and Phase Representation of the Fourier
Transform
« Changesin the phase function of X(jw) lead to changesin thetime-
domain characteristicsof thesignal Xt)
« In some applications, the phasedistortion may beimportant, whereas
inothers it isnot
« For example, theauditory systemis relatively insensitiveto phase
— Mild phase distortion such as those affecting individual soundsdo not lead to a
loss of intelligibility
— More severe distortion of speech, however, do affect
« Example x(t) isatape recording of asentence x({) isthesame
sentenceplayed backward. Assuming that x(t) isred valued
F{x(- 0} = X (- jw) = X (jw) |e” Tr0lx (W)
i.e. the spectrumhasthe same magnitude function anddiffersonly in
phase => Thephasedoes affect intelligibility
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The Magnitude and Phase Representation of the
Fourier Transform
» Theimportanceof phaseis found in examiningimages:

— A monochrome imagecan bethought of asasignal x(t;,t,) witht, and t,
denoting thespatial variables, i.e., horizontal and vertical coordinate points,
respectively, and x(t,t,) thebrightness of the imageat the point (t; t,)

— TheFourier transform X(jw ; jw,) of the imagerepresents a decomposition of
the imageinto complex exponential componentsof the form eitig w22 that
capture the spatial variationsof x(t;,t,) a different frequencies in each of the
two coordinatedirections

¢ Inimages, mogt importantvisual informationisin the edges and
regionsof high contrast

Intuitively , maximumand minimumintensity in theimage are places
at which complex exponentials at different frequencies arein phase

=> The phaseshould capturetheinformation about the edges
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Example:
Two-Dimensional Image

(@ Monochrome imagex(t, ,t,)

(c) Phase of XQW]WZ)

(b) Magnitudeof X(w; jw,)
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Example: Two-Dimensional Image

(d) InverseFourier transformof
X(w , w,)with setting the
phaseto 280

(©) InverseFourier transformwith
| XGw jw,) |t equal toLand
keeping the phaseunchanged
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Example: Two-Dimensional Image

(f) InverseFourier transformof a (g) The imagethe magnitudeof
mixture with theoriginal which hasbeen used in (f)
phaseand the magnitudeof a

completely differentimage
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The Magnitude and Phase Representation of
the Frequency Response of LTI Systems

o sol=i

In frequency domain:

YEe") =X EeM)HEY)

The effect that an LTI system hason theinput isto change
the complex amplitude of each of the frequency components
of thesignal
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The Magnitude and Phase Representation of
the Frequency Response of LTI Systems

« In termsof the magnitude-phase representation, the nature
of the effect can be understood in more detail

e e e

arg [\((ei‘”)] =arg ’H(ei‘”)]+arg lX(ejW)]
e |H(e)|isthegain of the system
» ag[H(e")] isthe phaseshift of the sysem
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Linear and Nonlinear Phase

* Whenthe phase shiftin wis alinear functionof w, thereisa
straightforward interpretation of the effect in thetime domain
« Consider theDT LTI systemwith frequency response

HEY) = W
sothe systemhas unit gain and andlinear phase, i.e,
"=t arg [He|=-wr
« This corresponds to atime shift in the time domain, i.e.
Mn=xn- ry]

« Thelinear phase property means that all the componentsof thesignal
(complex exponentialg are delayed in thesystemwithn,

0l Smda Tik-61.140 / Chapter 6 15

The Effect of Linear and Nonlinear Phase

* Input isapplied tothree different sysems with unit gain (H(e€")|=1)

Iml o

R R

(@)

(b) Linear phase

H(e")=e"
I‘ l] i.e, theinputis

delayed by 5 ssamples
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The Effect of Linear and Nonlinear Phase

“ l (c) Nonlinearphase
T e H, (e'w)

(d) Nonlinear phase
anddelay

, SJ‘“IHIH,H. He")
s l“ *

=H,(e")H E")

(d)
¢ The systems with H(e")|=1 arereferred to asallpass sysems
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Group Delay
The phase slopeof linear phasesystems tells usthesize of thetime
shift
arg[H (€")]=-wn, corresponds to a shift or delay of nysamples
Extendingthe concept of delay to nonlinear phase characteristics,
consider effects of thephaseof aDT LTI systemon anarrowband
inputsignal x[n],i.e., X(€") iszero or negligibly smdl outside a
small band of frequencies centered at w=wj,
We can approximatethe phase within this band by alinear
approximation (first-order approximation)

arg [H(é""’)] »f -wny
sothat

Y& ax ) |H(ejW1 6 g inn
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Group Delay
Y& @x e |H(é'W)|e' e iwn,

* The magnitude shaping of the narrowband input correspondsto
|H(e%)| and the phase shaping with multiplicationby anoverall
complexfactor e and multiplication by alinear phase termein®
correspondingto atime shift of n, samples
Thetime shift (delay) nyis referred to asthe group delay at w=w,

It isthe effective common delay experiencedby the smdl band or
group of frequencies centered at w,

« Thegroup delay a each frequency eguas thenegative of theslope
of thephase at that specific frequency, i.e., the group delay is defined
® () =—Lfargte™}

dv
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Example 6.1: A CT all-pass system with varying group delay

Y-S o 1+(jwiwg)2- 2jzw i)
- . wh ; - i i i
MO = O HiCw), where () = i 2+ 2.2, v )

Now, w;=2pf; with f; @50 Hz, f, @50 Hz, and f3 @300 Hz

2
Magnitude : |H(jw|=1 Pnase: arg[H(jw)]=aarg[H (w)]
i=1

di3 .
Growp delay:  t@W=-—13 ag[H(jw)
izt
« Principal phasewithvaluesbetween -p and p (i.e. thephase modulo 2p)
* Non-constantgroup delay causesdispersion intheimpulse response
« F{d(t)}=1 => All frequenciesof theimpulse are aligned intime in such
away thatthey combineto forman impulse
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Example 6.1: T ]
A CT alkpass system §W
with varying group che#a\/ R B DR B |

a) Principal phase i :

b)Unwrapped phase . T
B
¢) Group delay ’ — ‘ :

d)Impulseresponse — .
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Log-Magnitude and Bode Plots

* Logarithmicscale for the magnitudeof the Fouriertransformis
often convenient both in CT and DT

» The product of magnitudesin CT canbe displayed in logarithmic
scale as additive relationship,i.e.

[YGw) =[H(w) [X(w)| P Tog]¥(jw)|=Iog|H(jw) +Iog|X(jw)|

« Consequently, thegraph of the Fourier transformof the output of the
systemi's obtained by addingthe log-magnitudes of H({w) andX(jw)
and the phasesof H(jw) and X(jw), i.e., theplots canbe added to
obtainthe graphical representation

« |n addition, thelogarithmicscale alows detail sto bedisplayed over a
wider dynamic range
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Bode Plots of CT System Responses

« The specific logarithmic amplitude scaleusedis inunits20logy ,
referred to asdecibels (dB)

< 10 * Bode plots are used
2% in continuous-time
e inwhich a
5 logarithmic
5 ke %

frequency scaleis
commonly used

0 00 00
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Log-Magnitude Plots of DT System Responses

201090 H(e™)] « In discrete -time, themagnitudesof
ue the Fourier transform are often
® displayed in dB
W /\/\ « In discrete -time, the logarithmic
b B ) - =  frequency scae isnot typicaly used
» because therange of frequenciesis
limited due to periodicity of the
I frequency response

z « Notice that therel ationship between
H amplitudeand power gain in

decibelsis

o 1 . b Z >
K 20|ogm|H(eW1 :10|og0|H(eJW)|

: / /

Amplitudegain Power gain
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Time-Domain Properties of Ideal Frequency-Selective Filters

il [wEw HE")

N
ks L L

-2p P -We g W P 2pw

« lded lowpass filter has perfect selectivity
« |n addition, thefilter has zero phase characteristics, o they introduce
no phasedistortion
Anideal filterwith linear phaseover the passband, introduces only a
simpletime shift when compared to the response of theideal lowpass
filterwith zero phase characteristics

arglH(E")]

We
Pow 0N pw
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Time-Domain Properties of Ideal Frequency-Selective Filters

« Theimpulse response corresponding to theideal lowpass filterin DT
isthesinc function

r{n]:sirwcn:%g awcng
pnp ePg
ettt

» Noticethat thewidthof the thepassbandof H(e") isproportional to
W, while thewidthof the mainlobe is proportional to 1/ w,inthe
impulse responseh[n]
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Time-Domain Properties of Ideal Frequency-Selective Filters

« Augmenting theided frequency response (either in CT ar DT case)
with alinear phase characteristicssimply delaystheimpul se response

h(t-a)
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Time-domain Properties of Ideal Frequency -Selective Filters

* The step resnonse

sln]

qri= & hird H”
ate PYPYIR 1 1) [[
JY '

 The step response overshootsits longtermfinal values and ocillate
» Theoscillatory behavioris referred to asringing
« Therisetime of thefilterisinversely proportional to the bandwidth

G0l smia Tik-61.140 / Chapter 6 28

Time -Domain and Frequency-Domain Aspects of
Nonideal Filters

« In many filtering applications, the spectra of signalsto be separated
overlap dightly

X(E")
0 w

* We may wishtotradeoff the fidelity withwhich thefilter preserves
oneof thesignals, eg., X,(t), againstthe level to which frequency
componentsof the second signd , X,(t), are attenuated

« A filter with agradud transition frompassbandto stopband is
generaly preferable when filtering the superposition of signalswith
overlapping spectra

- Nonideal filtersare of considerable practical importance
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Magnitude Specifications of a Nonideal Lowpass Filter

[HGw)|

148 f—orm—

1-8,F

A

° @p g ©
* Deviation in passband is d, anddeviation in stopbandis d,
 Passhand ripplespecified by d; andstopband ripplespecified by d,
» Passhand edge frequencyis w, and stopband edge frequency is w
* Transitionbandisthefrequency range between w;, and wg
« Specificationof thephase characteristics is sometimes al soimportant
S olismia Tik-61.140 / Chepter 6 30




The Time-Domain Behavior of Nonideal Filters

I'n time-domain, specifications are often imposed on the step response
¢ Risetimet, of thestep response

« Theoscillatory behavior, i.e. ringing, isoftenof importance

*  Parameters characterizing the nature of ringing:

o 1) The overshoot D of the
final value of the step
response

2) Theringing frequency w;

3) Thesettlingtimets, i.e
the timerequired for the
step response to settle

. : within a specified

v N tolerance
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Example 6.3: Fifth Order Filter Designed for w,=500 Hz

» Rationa frequency
response and red -
valued impulse
response

Butterworth filter:

Wider transition band
with lessovershoot and
ringing

Elliptic filter: Narrower
transitionbandwith
higher overshoot and
longer settlingtime

|
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First and Second Order Discrete-Time
Systems

* Any system with afrequency responsethat isa ratio of
polynomialsin e, i.e., any discretetime LTI system
described by alinear constant-coefficient difference
equation, can be written asa product or sum of first and
second order systems

* These basic systems are of considerablevaluein both
implementing and analyzing more complex systems
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First-Order Discrete-Time Systems
* First order causa LTI sytem

yin]- ay[n- I =xn], with |al<l
« The frequency responseis HEeW)= 1
1-ae” VW
* The impulseresponseis: h{n]=a"yn]

* The stepresponseis given as:

_ an+l
12 i

] =Hr ) ==
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Impulse Response of the First-Order Discrete-Time System
hln] hin]

! a=sl ' 1

[t [

hin) hin)

e,

(@ @
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Step Response of the First-Order Discrete-Time System

sinl
3

1111111111 O

sinl sl

1
3 a=-1

.........LL.T.LLLLLUJ.LI.II]_L[LI_LU_LLL" .........LJ.[LT.UI[IH_U_LLUJ_LUIILL"

@ ()

)
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First-Order Discrete-Time Systems

« The magnitude of the frequency responseof the first-order systemis:

jwy| = 1
|H(e )| (1+a\2-2acosw)u2

« Thephaseis: H(elW)|= - tan-1_2SNW
arg[ e )] an 1- acosw

« |a|determinesthe rate a which the systemresponds
* For a >0, the systemattenuates high frequencies => lowpass filter
« For a <0, the systemattenuates low frequencies => highpass filter
* Responses are shown in Figure6.28 (a) and (b)
« Parameter aplays similar role asthetime-congtant t in continuous-
time systems
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Frequency Response of the First-Order Discrete-Time System

2ogalHo”) L el
} 2008 e

@ ®

Parameter a plays determines the behavior of the system
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Second-Order Discrete-Time Systems
« Consider the second-order causa LTI systemdescribed by
yin]- 2r cosqy[n- 1]+r2y[n— 2l=xn]
withO<r<land0<q<p
« Thefrequency response for thissystemis:
1
1- 2rcosg € W +r2e 1V
 The denominator of H(€") canbe factored
1
ll- (reld)e jWJ Il— (re~Ja)e iw

H(elY) =

H(e") =
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Second-Order Discrete-Time Systems

* Partial fraction expansion gives (for g not equa to Oor p)
HE) =2 B
- (rel%)e JW] [1— (re’1%e” JW]

Al
where A= —— and B= .e.
2jsing 2jsingq

« Theimpulse responseof thesystemisnow

_é\(ap o o nsinf0+1)q]
h[n]—gA(réq) +B(re’q) Hu[n]—rn sirg uln]
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Second-Order Discrete-Time Systems

1

* Whengq=0, H(elv)= and Hn]=(n+)r"un]

2
1-re” JWI

« Wheng=p, H(el) = 5
L+re W

and h[n]=(n+2)( r)"u[n]

Impulse response:

« Therateof decay of h[n] iscontrolled by r :
Thecloserristo 1, thedower isthe decay in h[n]

« Thefrequency of oscillationis controlled by g

« Impulse responseswith different parameter values are depicted
in Ag.6.29
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Impulse Response of the Second-Order Discrete-Time System
! -

‘n o " ‘E o 4 ]mm o "

" ‘L__*Vn ‘ - *—L—‘n . ; —h(r*'—‘., J :

AR vw e )
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Second-Order Discrete-Time Systems

The step response

* Theeffect of different values of r and q can alsobeseen by
examiningthe step response

* Step responses with different parameter values areshown in Fig. 6.30

« For anyvalueof g other than zero, theimpulse responsehes a
damped oscillatory behavior , and the step response exhibits ringing
and overshoot

Magnitude and phase response

« Theband of frequencies determined by qisamplified

« The parameter r determineshow sharply peaked the frequency
responseis

« Frequency responses are depictedin Fg. 6.31 (a)-(e)
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Frequency Response of the 2" Order Discrete-Time System

Magnitude and phase response.

» Theband of frequencies
determined by q isamplified

e The parameter r determines
how sharply peaked the
frequency responseis

* Thefrequency with maximum
gainis calledthe resonance
frequency

* Frequency responses for

- differentvalues of g are

o depicted in Fig. 6.31 (a)-(€)
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Frequency Response of the 2™ Order Discrete-Time System

20109, (e 20l09,0 W]
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Frequency Response of the 2™ Order Discrete-Time System
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Examples of Discrete-Time Nonrecursive Filters

* Moving average filter
1 ¥

axn-K]

v = ———
N+M+1, 20

« The corresponding impulse responseis arectangular pulse
« Thefrequency responsefor thissystemis:

eiwi(N-M) /2] SNW(M + N +) /2]

H(elW) =
@) N+M+1 sin(w/2)

« This corresponds to alowpass behaviorin frequency domain,
i.e, itisthesinc function
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Moving Average Filter (N=33)
N\

N\

frtd

3 ¥ 08 o7
‘Normalized Frequency (vw.radisamplz)

RRAR

08 08

)
>

Phase (degrees)

03 ) R 07 03 09
‘Nomalized Froquency (v rad/sampls)
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Moving Average Filter (N=65)

L
5 ”\1 'ﬁ A ARA PP
! 7! ”HW‘HWH il
P ety (e
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O
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Examples of Discrete-Time Nonrecursive Filters
» Moregeneral formof adiscretetime nonrecursive filter
¥
yin] = a bo{n- K]
k=-N

» Theoutput of this filter can be thought as aweighted average of
N+M+1 neighboring points

* In moving averagefilter all the weights are set to 1/(N+M+1)

» Thereisavariety of techniques available for choosing the
coefficients b, to meet certain specifications
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Window Function Method in FIR Filter Design

« Ingeneral, FIR filters can bedesigned using the windowfunctions,
i.e, theinfinitelength impulse response resulting fromtheinverse
Fouriertransformof the frequency domain characteristics of anideal
lowpass filteristruncated by awindow function withproper weights

) . 3L n=01..N-1
* Rectangular window: Wr[n]—nQ dsawhere

. . n u
» Hanning window: Hamm[n]——gl 0032';
. . n
+ Hammingwindow: W [1] = 0.54 - 0460052";
i . 2pn 4pn
« Blackman window: Waporan [ = 0.42- 05cosN—1+o Oﬁcosm

« Kaiserwindow: Defined using the zero-order Bessdl functions
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Rectangular Window (N=65)

T\{ v\\WY\Y\Ym w Y

Impul se response Frequency response
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Hanning Window (N=65)

w 1 3 o s
"} A : ey ‘\'\m“\\i\‘ﬁ\"’\’\"\f"\\‘

" 4| s 7 Normatond oy (s s

Impulse response Frequency response
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Blackman Window (N=65)

Impulse response Freguency response
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Example: High Order Lowpass FIR Filter

Order 251 FIR Filer designed with REMEZ

Magnitude (4B

M i wn Wi

1 1000 5ona
N aaency o
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Example: High Order Lowpass FIR Filter / Passband

Order 251 FIR Fiter designed vith REMEZ

MuJ\rM‘um
A ot
|

Magnitude (4B

Hiv \

600 0
Frequency (H2)
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Moving Average Filter:

H(ejw)= 1 ejw[(N-M)/z]Sin[W(M +N +1)/2]
N+M +1 sin(w/2)

« Thepheseislinear:  ag[H(e™)]=[(N- M)/2w

« Fromthesymmetry properties of the Fourier transformof real
signalswe know that any nonrecursive filter with animpulse
response that isreal and evenwill have afrequency response
H(e" thatis rea and even and, consequently, has zero phase

« Thefilter isnoncausd , since h[n] hasnonzerovalues for n <0

« Ifacausal filterisrequired, then asimple changein the
impulse responsewill resultinlinear phase response
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Causal Moving Average Filter:

* Since h[n] istheimpulse responseof an FIR filter, it is
identically zerooutside arange of values centered at theorigin

h[n]=0 foral |n|>N

» Now, definethenonrecursive LTI systemobtained by delaying h[n]
with N steps (samples),i.e.
y[n]=h[n- N]
* The systemdefinedby h,[n] iscausd, i.e.,h,[n]=0forn <0
» The frequency responseisobtainedby the shiftingproperty :
Hye™)=H(eM)e N
* Since H(@") has zerophaseH, (6") does indeed havelinear phase
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Summary

« Inthischapter, we have built on the foundation of Fourier analysis of
signalsand systemsin order to examine in more detail the characteristics
of LTI systemsand the effects they have on signals

* Magnitude and phase charcteristicsof signals and systemswere discussed

« Theimpactof phase and phase distortionon signalsand systemswere
considered

« Linear phase characteristicscorrespond to a constant delay at all
frequencies

« Propertiesof ideal and nonideal frequency -selective filters were examined

« Time-frequency characteristicsand tradeoffs of first and second order
discrete-time recursive filters were investigated

« Various nonrecursive FIR filters based on windowing techniqueswere
introduced
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