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Time and Frequency Characterization
of Signals and Systems

• Frequency-domain characterization of an LTI 
system in terms of its frequency response
represents an alternative to the time-domain
characterization through convolution

• In system design and analysis, i t is importantto 
relate time-domain and frequency-domain
characteristics and trade -offs

 Olli Simula
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• The Fourier transformis complexvalued and its real and imaginary
parts can be represented in terms of magnitude and phase

The Magnitude and Phase Representation
of the Fourier Transform
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• In discrete-time

• In continuous-time
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• X(jω) provides a decompositionof the signal x(t) into a ”sum” of 
complexexponentioals at different freuencies
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• The magnitude |X(jω)| describes the basic frequency content of 
the signal

• The magnitude |X(jω)| provides the information about the relative
magnitudes of the complexexponentials that makethe signal x(t) 

• The phaseangle arg[X(jω)] does not affect the amplitudes of the 
individual frequency components, but instead provides information
concerning the relative phasesof the exponentials

• The phase relationships capturedby arg[X(jω)] have a significant
effect on the nature of the signal x(t) and thus contain a substantial
amount of information about the signal

The Magnitude and Phase Representation
of the Fourier Transform

 Olli Simula
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Example
• A ship encounters the superposition of three wave trains, 

each of which can be modeled as a sinusoidal signal

 Olli Simula

• With fixed magnitudes for thesesinusoids, the amplitude of 
their sum may be quitesmall or very large depending on their
relative phases
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Example: Linear combination of sinusoidal signals

The same sinusoidal componentswith phase shifts:
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(b) Φ1 = 4, Φ2 = 8, 
and Φ3 = 12 rad

Consider the signal:

 Olli Simula

(a) Φ1 = Φ2 = Φ3 = 0
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Example: Linear combination of sinusoidal signals
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(c) Φ1 = 6, Φ2 = -2.7, 
Φ3 = 0.93 rad

The resulting signals differ significantly for different
relative phases

 Olli Simula

(d) Φ1 = 1.2, Φ2 = 4.1, 
Φ3 = -7.02 rad
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• Changes in the phase function of X(jω) lead to changesin the time-
domain characteristicsof the signal x(t) 

• In some applications, the phasedistortionmay be important, whereas
in others it is not

• For example, the auditory systemis relatively insensitive to phase
– Mild phase distortion such as those affecting individual sounds do not lead to a 

loss of intelligibility

– More severe distortion of speech , however, do affect

• Example: x(t) is a tape recording of a sentence; x(-t) is the same
sentenceplayed backward. Assuming that x(t) is realvalued

The Magnitude and Phase Representation of the Fourier 
Transform

{ } )](arg[|)(|)()( ωωω jXjejXjXtxF −=−=−

i.e. the spectrumhas the same magnitude function and differs only in 
phase => The phasedoes affect intelligibility

 Olli Simula
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• The importanceof phase is found in examiningimages:
– A monochrome image can be thought of as a signal x(t1,t2) with t1 and t2

denoting the spatial variables, i.e., horizontal and vertical coordinate points, 
respectively, and x(t1,t2) the brightness of the image at the point (t1,t2) 

– The Fourier transform X (jω 1 jω2) of the image represents a decomposition of 
the image into complex exponential components of the form ejω1t1ejω2t2 that
capture the spatial variations of x(t1,t2) at different frequencies in each of the 
two coordinate directions

• In images, most importantvisual informationis in the edges and 
regionsof high contrast

• Intuitively, maximumand minimumintensity in the image are places
at which complexexponentials at different frequencies are in phase

The Magnitude and Phase Representation of the 
Fourier Transform

=> The phaseshould capturethe information about the edges
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Example: 
Two-Dimensional Image

(c) Phase of X(jω 1 jω 2) 

 Olli Simula

(b) Magnitude of X(jω1 jω2)

(a) Monochrome image x(t1,t2)
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Example: Two-Dimensional Image

 Olli Simula

(e) Inverse Fourier transformwith
| X(jω 1 jω 2) | set equal to 1 and 
keeping the phaseunchanged

(d) Inverse Fourier transformof 
X(jω 1 jω 2) with setting the 
phase to zero
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Example: Two-Dimensional Image

 Olli Simula

(g) The imagethe magnitudeof 
which has been used in (f)

(f) Inverse Fourier transformof a 
mixture with the original
phase and the magnitudeof a 
completely different image
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The Magnitude and Phase Representation of 
the Frequency Response of LTI Systems

The effect that an LTI system has on the input is to change
the complex amplitude of each of the frequency components
of the signal

h[n]x[n] y[n]= x[n]*h[n]

In frequency domain:
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The Magnitude and Phase Representation of 
the Frequency Response of LTI Systems

• In terms of the magnitude-phase representation, the nature
of the effect can be understood in more detail

)()()( ωωω jjj eXeHeY =
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• |H(ejω)| is the gain of the system

• arg[H(ejω)] is the phaseshift of the system

 Olli Simula
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Linear and Nonlinear Phase
• When the phase shift in ω is a linear functionof ω, there is a 

straightforward interpretation of the effect in the time domain
• Consider the DT LTI systemwith frequency response
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• This corresponds to a time shift in the time domain, i.e.

so the systemhas unit gain and and linear phase,  i.e.,
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• The linear phase property means that all the componentsof the signal
(complexexponentials) are delayed in the systemwith n0
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The Effect of Linear and Nonlinear Phase

5
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 Olli Simula

(a) Input signal

(b) Linearphase

i.e., the input is 
delayed by 5 samples

• Input is applied to three different systems with unit gain (|H(ejω)|=1)
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The Effect of Linear and Nonlinear Phase
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(c) Nonlinearphase

(d) Nonlinearphase
and delay
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• The systems with |H(ejω)|=1 are referred to as allpass systems
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Group Delay
• The phase slopeof linear phasesystems tells us the size of the time

shift
• arg[H(ejω)]=-ωn0 corresponds to a shift or delay of n0 samples
• Extendingthe concept of delay to nonlinear phase characteristics, 

consider effects of the phaseof a DT LTI systemon a narrowband
input signal x[n], i.e., X(ejω) is zero or negligibly small outside a 
smallband of frequencies centered at ω=ω0

• We can approximatethe phase within this band by a linear
approximation (first-order approximation)

[ ] 0)(arg neH j ωφω −−≈
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so that

 Olli Simula
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Group Delay

• The magnitude shaping of the narrowband input corresponds to 
|H(ejω)| and the phase shaping with multiplicationby an overall
complexfactor e-jΦ and multiplication by a linear phase terme-jn0

correspondingto a time shift of n0 samples

0)()()( njjjjj eeeHeXeY ωφωωω −−≅

The time shift (delay) n0 is referred to as the group delay at ω=ω0

• It is the effective common delay experiencedby the small band or
group of frequencies centered at ω0

• The group delay at each frequency equals the negative of the slope
of the phase at that specific frequency, i.e., the group delay is defined
as { })](arg[)( ω
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Example 6.1: A CT all-pass system with varying group delay
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• Principal phase withvalues between -π and π (i.e. the phase modulo 2π)
• Non-constantgroup delay causesdispersion in the impulse response
• F{δ(t)}=1  =>  All frequenciesof the impulse are aligned in time in such

a way that they combineto forman impulse
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Example 6.1: 
A CT all-pass system
with varying group delay

 Olli Simula

a)Principal phase

b)Unwrapped phase

c)Group delay

d)Impulse response
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Log-Magnitude and Bode Plots
• Logarithmicscale for the magnitudeof the Fourier transformis 

often convenient both in CT and DT
• The product of magnitudes in CT can be displayed in logarithmic

scale as additive relationship, i.e.

• Consequently, the graph of the Fourier transformof the output of the 
systemis obtained by addingthe log-magnitudes of H(jω) and X(jω) 
and the phasesof H(jω) and X(jω), i.e., the plots canbe added to 
obtain the graphical representation

• In addition, the logarithmicscale allows details to be displayed over a 
widerdynamic range

)()()( ωωω jXjHjY = )(log)(log)(log ωωω jXjHjY +=⇒

 Olli Simula
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Bode Plots of CT System Responses
• The specific logarithmic amplitude scaleused is in units20log10 , 

referred to as decibels (dB)

 Olli Simula

• Bode plots are used
in continuous-time
in which a 
logarithmic
frequencyscale is 
commonly used

Tik-61.140 / Chapter 6 24

Log-Magnitude Plots of DT System Responses
• In discrete -time, the magnitudes of 

the Fourier transform are often
displayed in dB

• In discrete -time, the logarithmic
frequency scale is not typically used
because the range of frequencies is 
limited due to periodicity of the 
frequency response

• Notice that the relationship between
amplitude and power gain in 
decibels is

 Olli Simula
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Time-Domain Properties of Ideal Frequency-Selective Filters

• Ideal lowpass filter has perfect selectivity
• In addition, the filterhas zero phase characteristics, so they introduce

no phasedistortion
• An ideal filterwith linearphaseover the passband, introduces only a 

simple time shift when compared to the response of the ideal lowpass
filterwith zero phase characteristics
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Time-Domain Properties of Ideal Frequency-Selective Filters

• Notice that the widthof the the passbandof H(ejω) is proportional to 
ωc, while the widthof the main lobe is proportional to 1/ ωc in the 
impulse responseh[n]

• The impulse response corresponding to the ideal lowpass filter in DT 
is the sinc function:

 Olli Simula
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Time-Domain Properties of Ideal Frequency-Selective Filters

 Olli Simula

• Augmenting the ideal frequency response (either in CT arDT case) 
with a linear phase characteristicssimplydelays the impulse response
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Time-domain Properties of Ideal Frequency -Selective Filters

• The step response overshoots its longtermfinalvalues and oscillate
• The oscillatory behavior is referred to as ringing
• The rise time of the filter is inverselyproportional to the bandwidth

• The step response: 

 Olli Simula
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Time-Domain and Frequency-Domain Aspects of 
Nonideal Filters

• We may wish to tradeoff the fidelity withwhich the filterpreserves
one of the signals, e.g., x1(t), against the level to which frequency
componentsof the second signal, x2(t), are attenuated

• A filter with a gradual transition frompassbandto stopband is 
generally preferable when filtering the superposition of signals with
overlapping spectra

• In many filtering applications, the spectra of signals to be separated
overlap slightly

0 ω

X(ejω)
X1(ejω)

X2(ejω)

Nonideal filtersare of considerable practical importance
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Magnitude Specifications of a Nonideal Lowpass Filter

• Deviation in passband is δ1 and deviation in stopbandis δ2

• Passband ripplespecified by δ1 and stopband ripplespecified by δ2

• Passband edge frequencyis ωp and stopband edge frequency is ωs

• Transitionband is the frequency range between ωp and ωs

• Specificationof the phase characteristics is sometimes also important
 Olli Simula
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The Time-Domain Behavior of Nonideal Filters

In time-domain, specifications are often imposedon the step response: 
• Rise time tr of the step response
• The oscillatory behavior, i.e. ringing, is oftenof importance
• Parameters characterizing the nature of ringing:

 Olli Simula

1) The overshoot ∆ of the 
final value of the step
response

2) The ringing frequency ωr

3) The settling time ts , i.e. 
the time required for the 
step response to settle
within a specified
tolerance

Tik-61.140 / Chapter 6 32

Example 6.3: Fifth Order Filter Designed for ω p=500 Hz

• Rational frequency
response and real-
valued impulse
response

• Butterworth filter: 
Wider transition band
with lessovershoot and 
ringing

• Elliptic filter: Narrower
transitionband with
higher overshoot and 
longer settlingtime

 Olli Simula
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First and Second Order Discrete-Time
Systems

• Any system with a frequency response that is a ratio of 
polynomials in e-jω , i.e., any discrete-time LTI system
described by a linear constant-coefficient difference
equation, can be written as a product or sum of first and 
second order systems

• These basic systems are of considerable value in both
implementing and analyzing more complex systems
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• First order causal LTI system

First-Order Discrete-Time Systems

1||with,][]1[][ <=−− anxnayny

ω
ω

j
j

ae
eH

−−
=

1

1
)(• The frequency response is: 

][][ nuanh n=• The impulseresponseis:

• The step responseis given as:

][
1

1
][][][

1
nu

a
a

nunhns
n

−
−

=∗=
+

 Olli Simula

Tik-61.140 / Chapter 6 35

Impulse Response of the First-Order Discrete-Time System

 Olli Simula Tik-61.140 / Chapter 6 36

Step Response of the First-Order Discrete-Time System

 Olli Simula
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• The magnitude of the frequency responseof the first-ordersystemis:

First-Order Discrete-Time Systems
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• The phase is:

• |a| determines the rate at which the systemresponds
• For a > 0, the systemattenuates high frequencies =>  lowpass filter
• For a < 0, the systemattenuates low frequencies =>  highpass filter
• Responses are shown in Figure6.28 (a) and (b)
• Parameter a plays similar role as the time-constant τ in continuous-

time systems
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Frequency Response of the First-Order Discrete-Time System

Parameter a plays determines the behavior of the system
 Olli Simula
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• Consider the second-order causal LTI systemdescribed by

Second-Order Discrete-Time Systems

• The frequency response for thissystemis:

• The denominator of H(ejω) can be factored
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• Partial fraction expansion gives (for θ not equal to 0 or π)

Second-Order Discrete-Time Systems

where

• The impulse responseof the systemis now
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• When θ = 0 ,

Second-Order Discrete-Time Systems

Impulse response:
• The rate of decay of h[n] is controlled by r :

The closer r is to 1, the slower is the decay in h[n] 
• The frequency of oscillationis controlled by θ
• Impulse responseswith different parameter values are depicted

in Fig. 6.29
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Impulse Response of the Second-Order Discrete-Time System

 Olli Simula
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The step response:
• The effect of different values of r and θ can also be seen by

examiningthe step response
• Step responses with differentparametervalues areshown in Fig. 6.30
• For anyvalueof θ other than zero, the impulse responsehas a 

damped oscillatory behavior , and the step response exhibits ringing
and overshoot

Second-Order Discrete-Time Systems

Magnitude and phase response:
• The band of frequencies determined by θ is amplified
• The parameter r determineshow sharplypeaked the frequency

response is
• Frequency responses are depictedin Fig. 6.31 (a)-(e)
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Frequency Response of the 2nd Order Discrete-Time System

 Olli Simula

Magnitude and phase response:
• The band of frequencies

determined by θ is amplified
• The parameter r determines

how sharplypeaked the 
frequency response is

• The frequency with maximum
gain is calledthe resonance
frequency

• Frequency responses for 
differentvalues of θ are
depicted in Fig. 6.31 (a)-(e)

Tik-61.140 / Chapter 6 45

Frequency Response of the 2nd Order Discrete-Time System

 Olli Simula Tik-61.140 / Chapter 6 46

Frequency Response of the 2nd Order Discrete-Time System

 Olli Simula
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• Moving average filter

Examples of Discrete-Time Nonrecursive Filters

• The corresponding impulse response is a rectangular pulse

• This corresponds to a lowpass behavior in frequencydomain, 
i.e., it is the sinc function
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• The frequency response for thissystemis:
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Moving Average Filter (N=33)

 Olli Simula
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Moving Average Filter (N=65)

 Olli Simula Tik-61.140 / Chapter 6 50

• More general formof a discrete-time nonrecursive filter

Examples of Discrete-Time Nonrecursive Filters

• The output of this filter can be thought as a weighted average of 
N+M+1 neighboring points

• In moving average filter all the weights are set to 1/(N+M+1)
• There is a variety of techniques available for choosing the 

coefficients bk to meet certain specifications

∑
−=

−=
M

Nk
k knxbny ][][

 Olli Simula
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• In general, FIR filters can be designed using the windowfunctions , 
i.e., the infinite length impulse response resulting fromthe inverse
Fourier transformof the frequency domain characteristics of an ideal
lowpass filter is truncated by a window function withproper weights

Window Function Method in FIR Filter Design

• Rectangularwindow:

• Hanning window:

• Hammingwindow:

• Blackman window:

• Kaiserwindow:  Defined using the zero-order Bessel functions
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Rectangular Window (N=65)

Impulse response Frequency response

 Olli Simula
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Hanning Window (N=65)

Impulse response Frequency response

 Olli Simula Tik-61.140 / Chapter 6 54

Blackman Window (N=65)

Impulse response Frequency response

 Olli Simula
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Example: High Order Lowpass FIR Filter

 Olli Simula Tik-61.140 / Chapter 6 56

Example: High Order Lowpass FIR Filter / Passband

 Olli Simula
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Moving Average Filter:

• Fromthe symmetry properties of the Fourier transformof real
signals we know that anynonrecursive filter with an impulse
response that is real and evenwill have a frequency response
H(ejω) that is real and even and, consequently, has zero phase

• The filter is noncausal, since h[n] has nonzerovalues for n < 0
• Ifa causal filter is required, then a simple changein the 

impulse responsewill result in linearphase response
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Causal Moving Average Filter:

• Now, definethe nonrecursive LTI systemobtained by delaying h[n] 
with N steps (samples), i.e.

• Since h[n] is the impulse responseof an FIR filter, it is 
identically zero outside a range of values centered at the origin

N|n|nh >= allfor 0][

][][1 Nnhnh −=

• The systemdefinedby h1[n] is causal, i.e., h1[n]=0 for n < 0

• The frequency responseis obtainedby the shiftingproperty:
Njjj eeHeH ωωω −= )()(1

• Since H(ejω) has zerophaseH1(ejω) does indeed have linearphase

 Olli Simula
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Summary
• In this chapter, we have built on the foundation of Fourier analysis of 

signals and systems in order to examine in more detail the characteristics
of LTI systems and the effects they have on signals

• Magnitude and phase charcteristics of signals and systems were discussed
• The impact of phase and phase distortion on signals and systems were

considered
• Linear phase characteristics correspond to a constant delay at all

frequencies
• Properties of ideal and nonideal frequency -selective filters were examined
• Time-frequency characteristics and tradeoffs of first and second order

discrete -time recursive filters were investigated
• Various nonrecursive FIR filters based on windowing techniques were

introduced

 Olli Simula


