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A long-standing goal in our research has been to find out how certain invariant-
feature filters may emerge in learning processes. This problem was recently solved
by one of the authors [1-3]. The key insight was that if input patterns must be recog-
nizable invariantly to certain transformations, the members in natural sequences of
such patterns must also be produced from each other by the same transformations.
If the sequences are relative short, one may think that a particular transformation
predominates in them, and the successive patterns then belong to some linear sub-
space that corresponds to this transformations. Such signal subspaces can be learned
by the architecture delineated in Fig. 6.
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Figure 6: The ASSOM architecture.

Each dotted line in Fig. 6 distinguishes a module, a processing unit in a special SOM
array. The first-layer neurons are linear and they output the sums of dot products
of x with the various synaptic input weight vectors. The second-layer neurons (Q)
form quadratic functions of the first-layer neuron outputs. If the weight vectors
of the linear layer are orthonormalized, the neurons of the output layer shall form
sums of squares of their inputs. The circuit represented by Fig. 6 can then be shown
to compare the input pattern x with the linear subspaces spanned by the weight
vectors of the first layer. If the weight vectors can be defined in a way in which their
linear combinations represent some transformation groups, then matching becomes
invariant with respect to these groups. Below it will be shown that such weight
vectors emerge in an unsupervised learning process.

The outputs from the modules shall further be compared by a winner-take-all (WTA)
function, which in Fig. 6 is shown as a separate operation. The WTA function spec-
ifies the “winner” module, indexed by ¢, as defined below; module ¢ and its neighbor-
ing modules in the array will be updated in proportion to the so-called neighborhood
function h,; like in a usual SOM. In a physical network the WTA function may be
integrated with the modules, for instance by their lateral interaction. _
Let us denote the input weight vector, indexed by h of module 7 by bgf). The bff)
of the same module are now assumed orthonormal; at least they can be orthonor-
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malized easily. They can then be regarded as the orthonormal basis vectors of some
linear subspace L&, or a set of vectors x, where every x can be expressed as a general
linear combination of the bh .

Let % be the orthogonal projection of x on L%, or

%0 =% b x . (63)
h
For an arbitrary x that need not belong to £® one can define its distance d from
L defined by
d* = d*(x, £9) = [|x||* — |x@]|* . (64)
The wvectorial projection error is the residual
%0 =z — %O (65)

For an arbitrary x, its minimum projection error can be defined as the distance of
X from the closest subspace £, and the “winner subspace” with index c is defined
by

9] = min{|[x?]]}, or (66)
(2
X9 = max{[|x?]} . (67)
(2
Our goal is to let all the modules of Fig. 6 approximate x by its different projec-
tions, and always select the module that produces the best approximation over the

array. The objective function that defines the average expected spatially weighted
normalized squared projection error is

z)||2

/ z hm SRS (68)

where h,; is the neighborhood function that defines the interaction of modules ¢ and
i like in a usual SOM, and c is the index of the winner subspace L% = L), Notice
that c is a function of x and all the basis vectors b;f).

Minimization of (68), i.e., selection of the basis vectors b;f) for all subspaces £ such
that the average expected distance of x from the closest subspace is minimized, is a
rather complicated process [1-3]. Some extra problems are caused by the stability of
the recursion by which F; is minimized. Without quoting all the details it may be
mentioned that if the Robbins-Monro stochastic approximation process [4] is used,
i)

the optimal values of the bEL are obtained in the recursion [5].

b (¢t + 1) = b (1) + A()hei(t) 2 (2) | (69)

Consider now an “episode” S that consist of a finite set of successive sampling times
tp; denote S = {t,}. The set of samples X = {x(t,)|t, € S} has to be recognized as
one class, such that any member of X and even an arbitrary linear combination of
the x(t,),t, € S shall be decoded by the same module of Fig. 6 (subspace £®). In
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learning, the vector set X, defined as the Cartesian product of the x(¢,), t, € S, must
be taken as one batch, instead of optimizing the error using single patterns x(t,)
one at a time. The error minimization problem will now be modified by defining the
new objective function in terms of the average expected spatially weighted normalized
squared projection error over the episodes:

xz) 2
b= [ ¥ Yhal il (10)

tp€S 1

Here p(X) is the joint probability density for the samples x(¢,),, € S that produce
the Cartesian product set X, and dX is a shorthand notation meaning a volume
differential in the Cartesian product space of the x(t,).

Minimization of (70) defines the basis vectors b\’ and a set of analyzers that are
optimally invariant to the transformations that occur in the input signal patterns.
The Robbins-Monro stochastic approximation is applicable to the minimization of
E5, too, when the gradient step is made to consist of the whole episode S. The

learning phase is then desribed by the following equation:

b+ =B+ A0 ¥ XEELI0 . )

5 X

When A(t) is small, (71) is equivalent with the following learning process in which
the basis vectors are formed by a product of elementary projection operators, each
one corresponding to one pattern x(%,),t, € S:

Gy _ N x(t,)x" (1) (i)
b= IL |+ ot i) o ) (72)

The special learning-rate factor A = a(t,)||x(t,) || /|1X® (¢,)]] in (72) has been chosen
for stability reasons.

There are several other minor details in the process that improve the algorithm [3,5].
We have produced various ASSOM filters for very different input data [1,2]. Here a
simple demonstration, illustrating the basic idea, is shown.

Over the input field we generated patterns consisting of colored noise (white noise,
low-pass filtered by a second-order Butterworth filter with cut-off frequency of 0.6
times the Nyquist frequency of the sampling lattice). The input episodes for learning
were formed by taking samples from this data field. The mean of the samples was
always subtracted from the pattern vector.

In the translation-invariant filter experiment, the episodes were formed by shifting
the receptive field randomly into five nearby locations, the average shift thereby
being +2 pixels in both dimensions. Fig. 8 shows the basis vectors b;; and b,
similar to Gabor filters, in a gray scale at each array point of a two-dimensional
ASSOM. One should notice that the spatial frequencies of the basis vectors of the
same unit are the same, but the b;; and b;, are mutually 90 degrees out of phase.
(The absolute phase of b;; can be zero or 180 degrees, though.)

The episodes for the rotation filters were formed by rotating the input field at random
five times in the range of zero to 60 degrees, the rotation center coinciding with the
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Figure 7: Colored noise (second-order Butterworth-filtered white noise with cut-off
frequency of 0.6 times the Nyquist frequency of the lattice) used as input data. The
receptive field is demarcated by the white circle.
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Figure 8: The ASSOM that has formed Gabor-type filters: (a) The b;, (b) The b;,.

center of the receptive field. Fig. 9 shows the rotation filters thereby formed at the
ASSOM units; clearly they are sensitive to azimuthal optic flow.

Scale-invariant filters were formed by zooming the input pattern field, with the cen-
ter of the receptive field coinciding with the zooming center. The filters thereby
formed, shown in Fig. 10, have clearly become sensitive to radial optic flow, corre-
sponding to approaching or withdrawing objects.
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Figure 9: One-dimensional rotation-invariant ASSOM. (a) Cosine-type “azimuthal
wavelets” (b;1), (b) Sine-type “azimuthal wavelets” (bs). Notice that the linear
array has been shown in two parts.
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Figure 10: One-dimensional zoom-invariant ASSOM. (a) Cosine-type “radial
wavelets” (b;1), (b) Sine-type “radial wavelets” (b;z). Notice that the linear array
has been shown in two parts.
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