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5.1 Introduction

New so-called high-throughput measurement techniques have made possible genome-wide
studies of gene function. Gene expression, gene regulation, protein content, protein inter-
action, and metabolic profiles can be measured and combined with the genetic sequence.
The methods are used routinely in modern biology and medicine, and now the current
challenge is to extract meaningful findings from the noisy and incomplete data masses,
collected into both community resource and private data banks. The data needs to be
analyzed, mined, understood, and taken into account in further experiments, which makes
data analysis an integral part of biomedical research. Successful genome-wide analyses
would allow a completely novel systems-level view into a biological organism.

Combining the different kinds of data produces new systems-level hypotheses about
gene function and regulation, and ultimately functioning of biological organisms. We de-
velop probabilistic modeling and statistical data analysis methods to advance this field.
Our main novel contributions stem from the cross-breeding of the methodological basic
research, in particular on Modeling of Relevance, and collaboration with top groups in
Biology and Medicine. We have had long-standing collaboration with Laboratory of Cy-
tomolecular Genetics (Prof. S. Knuutila) and Neuroscience Center (Prof. E. Castrén),
University of Helsinki, University of Uppsala (Prof. J. Blomberg), Turku Centre for Bi-
ology (Doc. T. Aittokallio), VTT (Prof. M. Oresic), and smaller-scale collaboration with
several other groups. During 2007 we started new projects with EBI, UK (A. Brazma)
and Finnish CoE in Plant Signal Research, University of Helsinki (Prof. J. Kangasjärvi)
with promising results that will be reported in the next biennial report.

In 2006 we started a new conference series in collaboration with Prof. E. Ukkonen and
J. Rousu of University of Helsinki. The conference “Probabilistic Modeling and Machine
Learning in Structural and Systems Biology” inspired a special issue in a main journal,
and yearly conferences in Evry, France, in 2007, and in Belgium in 2008.
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5.2 Translational medicine on metabolical level

Translational medicine is a research field which attempts to more directly bring basic
research findings to clinical practice. One of the necessary steps of this process is to
translate inferences made on the molecular level, for example about metabolites, in model
organisms into inferences about humans. Such translation is extremely challenging and
the existing knowledge, if there is any, is currently largely tacit and only known to experts
of the specific disease and model organism.

Metabolomics is the study of the set of all metabolites found in a sample tissue.
Metabolite concentrations are affected strongly by diseases and drugs, and hence they
complement the genomic, proteomic, and transcriptomic measurements in an excellent
way, in studies of the biological state of an organism.

We are in the process of developing new computational methods for translational
medicine, for mapping between the observed metabolomics data from model organisms
and humans. In project TRANSCENDO we apply the methods to studies of the emer-
gence of Type I diabetes, by computing mappings between non-obese diabetic (NOD)
mice and children, and between the effects of a disease in several tissues. The project is
collaboration within a consortium involving computational systems biology (Matej Oresic,
VTT), semantic modelling (Antti Pesonen, VTT), probabilistic modelling (us), and phar-
macology and animal models of metabolic disease (Eriika Savontaus, University of Turku).

Metabolomic development in humans

Metabolic development of children and its differences between the genders is not yet well
understood. These dynamic changes may, however, affect strongly the susceptibility to
diseases and the responses to drugs.

We are studying a metabolomic data set derived from a collection of blood samples
collected during the first years of life from boys and girls. We assume that the metabolic
profiles are generated by a set of unobserved metabolic states, and we model those states
and the data with a Hidden Markov Model (HMM). HMM fits the assumption of latent
states very well and is easy to compute and interpret. Moreover, HMM provides a way
for probabilistic re-alignment of the time series, which takes into account the individual
variation in the dynamics. Simulations have indicated that HMMs can separate the boys’
and girls’ metabolic states more efficiently apart than traditional linear method; classifi-
cation accuracy is 73% for HMM, and under 60% for linear methods. Figure 5.1 presents
the model structures for girls and boys.

Disease-related dependencies between multiple tissues

A common setting in medical research is that a disease may be mainly located in a specific
organ, for example in lungs, but it indirectly affects multiple tissues. Giving drugs to
patients induces an analogous setup: the drugs may affect multiple other tissues in addition
to the target tissue (and hence disease). We are developing new methods for discovering
the disease-related metabolic dependencies between the multiple tissues, with the goal of
revealing potential side effects of the diseases and drugs.

In practice, we have metabolomics data from mice belonging to 4 classes: healthy and
untreated, sick and untreated, healthy and treated, sick and treated. A fast and straight-
forward way of digging out disease-related dependencies is to first find disease-related
aspects with partial least-squares classifiers, and then dependencies with canonical corre-
lation analyses and more straightforward correlations between contributing metabolites.
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Figure 5.1: HMM models for metabolic states in boys and girls. The nodes represent hid-
den metabolic states, and the arrows possible transitions. Note that the states form a chain
in order to force the models to focus on progressive changes in metabolite concentrations.

Figure 5.2: Disease-related dependencies between tissues before treatment (red), and after
treatment (green). The disease is located in the lungs so the dependencies between lungs
and plasma and spleen are logical, but note that after the treatment the dependency with
plasma disappears and a dependency to heart emerges. This might be a sign of a side
effect of the treatment.

This multivariate approach complements the traditional metabolite-wise linear models.
Figure 5.2 shows the dependencies found between tissues before and after drug treatment.
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Figure 5.3: Left: Sample visualization of a gene expression atlas of cancer samples by
curvilinear component analysis. Each dot denotes one microarray; the colors show the
cancer class of the sample. Right: Part of yeast gene regulatory interaction network
visualized by local multidimensional scaling.

5.3 Visualizing gene expression and interaction data

A large community-resource or private gene expression databank consists of numerous data
sets submitted by several parties. They may have been measured for different purposes,
with different treatments and methods in different laboratories. Several such databanks
have been established and they continue to grow. A key challenge is how to best use
the databanks to support further research. Currently information in these databanks is
accessed using queries on the imperfect meta-data, that is, textual annotations and de-
scriptions. In the future more sophisticated search methods, that take the actual data into
account, are needed. Our study [2] aimed at comparing the different methods applicable
as a visual interface that reveals similarities of data sets.

We compared several different visualization methods in the task of visualizing a large
collection of gene expression arrays. Several new methods have been recently proposed for
the estimation of data mani- folds or embeddings, but they have so far not been compared
in the task of visualization. In visualizations the dimensionality is constrained, in addition
to the data itself, by the presentation medium. It turned out that an older method,
curvilinear components analysis, outperforms the new ones in terms of trustworthiness
of the projections. Even though the standard preprocessing methods still need to be
improved to make measurements of different labs and platforms more commensurable, the
good news is that the visualized overview, expression atlas, reveals many of the cancer
subsets (Fig. 5.3). Hence, we conclude that dimensionality reduction even from 1339 to 2
can produce a useful interface to gene expression databanks.

Biological high-throughput data sets can also be visualized as graphs that represent the
relations between the biological entities. We applied our visualization methods for visual-
izing gene interaction graphs, and showed that Local Multidimensional Scaling performs
very well in this task (Fig. 5.3; [1]).
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5.4 Fusion of gene expression and other biological data sets

While analysis of gene expression data is a corner stone in modern bioinformatics, it is
not a sufficient description of cellular state. The cell is an extremely complex system,
and gene expression is only a partial view, among all the other omics. Only integration
of information from multiple sources can reveal the true potential of the modern high-
throughput measurement methods, such as gene expression data.

Integration is not trivial since the data types and scales can vary dramatically. More-
over, what is a proper way of doing the integration depends on the analysis task. Our
main novel contribution has been to develop and apply new methods for searching for
relevant features by combining data sources (described in Section Modeling of Relevance).
We have additionally developed more specific methods for taking into account the known
regulatory and context variables in modeling gene expression.

Relevant features through data fusion

We consider a data fusion problem of combining two or more data sources where each
source consists of vector-valued measurements from the same object or entities but on dif-
ferent variables. The task is to include only those aspects which are mutually informative
of each other. This task of including only shared aspects of data sources is motivated
through two interrelated lines of thought. The first is noise reduction. If the data sources
are measurements of the same entity corrupted by independent noise, discarding source-
specific aspects will discard the noise and leave the shared properties that describe the
shared entity. The second motivation is to analyze what is interesting in the data. One
example is the study of activation profiles of yeast genes in several stressful treatments in
the task of defining yeast stress response. In this example what is in common in the sources
is what we are really interested in. The “noise” may be very structured; its definition is
simply that it is source-specific.

A recent application is search for asbestos-related effects in gene expression by com-
bining several cell lines [3].

We recently showed that there is a simple and computationally fast way of doing
data fusion such that shared, relevant features are retained and source-specific noise is
discarded [2]. The method is based on the classical canonical correlation analysis; it is
surprising that there are still new practically important uses for so old methods! The
method has been applied to several gene expression studies: classification of cell cycle
regulated genes in yeast, identification of differentially expressed genes in leukemia, and
defining stress response in yeast. The software package is available at http://www.cis.

hut.fi/projects/mi/software/drCCA/.

Modeling context specific gene expression regulation

The biological state of the cell is to a large part defined by which genes are expressed at a
certain moment or under certain environmental conditions. Regulation of gene expression
is thus the key to understanding, for example, the reasons why some cells become trans-
formed to cancer cells. Regulation of expression has been under intensive study during
the past years, but analysis with statistical models has proved to be extremely difficult
because the sample sizes are always small due to high measurement costs. The effective
sample sizes become even smaller when analyzing context specific regulation, where the
data becomes divided according to the context or experimental setup. We have introduced
ways of context-specific modeling with one of the most often used model families, the Bays
networks.
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Figure 5.4: The structure of condition-dependent Bayesian network. Similarly behaving
genes are grouped into modules. The edges depict the regulatory interactions. The dashed
edges indicate interactions that are active in one of the conditions only. Genes linked from
the class node may behave differently in different conditions.

The gene regulatory relationships form a complex network in which genes can be
regulated by multiple regulators or through long chains of regulatory interactions. The
regulatory network adapts to the conditions outside the cell by activating or stopping regu-
latory interactions in response to changes in the environment. We have studied regulatory
networks in yeast with new condition-dependent Bayesian network [1]. The data has been
divided into several conditions or contexts indicated by a context or class variable that is
treated as a covariate. The model has the novel capability of identifying interactions that
are active only in subset of conditions. The output of the method is a graphical represen-
tation of the network where the possible condition-dependent interactions are highlighted.
Figure 5.4 depicts a conceptual example of a condition-dependent network.

We analyzed the regulation in yeast cultures which had been subjected to normal
and stressful growth conditions. The method identified 25 regulators which are active
only in stressful conditions. The majority of them (20 out of 25) have been annotated
stress-related in the literature. The rest are new potential stress regulators.
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5.5 Human endogenous retroviruses

The human genome includes surviving traces of ancient infections by retroviruses that
have become fixed to human DNA. These surviving traces are called human endogenous
retroviruses (HERVs). HERVs are interesting because they can express viral genes in
human tissues, and because their presence in the genome may affect the functioning of
nearby human genes. If ancient highly mutated elements are included, HERV sequences
form 8% of the human genome [1].

In earlier research we had used Self-Organizing Maps to analyze the classification of
HERVs into families [2]. In recent research we have moved to estimating the relative
activities (expression levels) of the HERVs across several human tissues. We analyze
activity for individual HERV sequences (rather than groups of sequences); this is vital
for analyzing their individual control mechanisms and their possible roles in diseased and
normal cell functions.

To find evidence of HERV activity, we use probabilistic modeling methods for expressed
sequence tags (ESTs) gathered from public databases. We introduced a generative mixture
model for EST sequences where each component of the mixture was associated with a
particular HERV (see the top subfigure of Fig. 5.5). In our experiments we compared this
rigorous model with a fast heuristic method; it turned out that the fast method performed
reasonably accurately on simulated data, which made it possible to analyze very large
HERV collections.

We first used the models to analyze overall activities across different tissues and con-
ditions. In addition to comparisons on simulated data, we performed several experiments
on real HERV data; the probabilistic method for a smaller and the fast method for a
larger set having 2450 HERVs [3]. Lastly the probabilistic model was used to estimate
tissue-specific expression of HERVs from the HML2 family [4].

Overall, 7% of the HERVs were estimated to be active; the majority of the HERV
activities were previously unknown. HERVs with the retroviral env gene were found to be
more often active than HERVs without env. We were also able to analyze which parts of
the HERV sequences the EST data match to; see [4] and its supplementary material for
figures. For the HERV family HML2, activity profiles of HERVs over tissues are shown
in the bottom subfigure of Fig. 5.5; some of the HML2 HERVs display tissue-specific
expression (e.g. activity in male reproductive tissues or in the brain).
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Figure 5.5: Top: the new probabilistic mixture model introduced for estimating activity of
human endogeneous retroviruses (HERVs) from expressed sequence tags (ESTs). Bottom:
activities of HERVs from the HML2 family in different tissues. Each column depicts the
expression profile of an individual HERV sequence; the columns have been ordered by
hierarchical clustering based on the profiles. Numbers next to the legend are probabilistic
EST counts. Letters A-F at the bottom identify individual HERVs that have been analyzed
in [4].


