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3.1 Introduction

What is Independent Component Analysis and Blind Source Separation? In-
dependent Component Analysis (ICA) is a computational technique for revealing hidden
factors that underlie sets of measurements or signals. ICA assumes a statistical model
whereby the observed multivariate data, typically given as a large database of samples,
are assumed to be linear or nonlinear mixtures of some unknown latent variables. The
mixing coefficients are also unknown. The latent variables are nongaussian and mutually
independent, and they are called the independent components of the observed data. By
ICA, these independent components, also called sources or factors, can be found. Thus
ICA can be seen as an extension to Principal Component Analysis and Factor Analy-
sis. ICA is a much richer technique, however, capable of finding the sources when these
classical methods fail completely.

In many cases, the measurements are given as a set of parallel signals or time series.
Typical examples are mixtures of simultaneous sounds or human voices that have been
picked up by several microphones, brain signal measurements from multiple EEG sensors,
several radio signals arriving at a portable phone, or multiple parallel time series obtained
from some industrial process. The term blind source separation is used to characterize
this problem. Also other criteria than independence can be used for finding the sources.

Our contributions in ICA research. In our ICA research group, the research
stems from some early work on on-line PCA, nonlinear PCA, and separation, that we were
involved with in the 80’s and early 90’s. Since mid-90’s, our ICA group grew considerably.
This earlier work has been reported in the previous Triennial and Biennial reports of our
laboratory from 1994 to 2005. A notable achievement from that period was the textbook
“Independent Component Analysis” (Wiley, May 2001) by A. Hyvärinen, J. Karhunen,
and E. Oja. It has been very well received in the research community; according to the
latest publisher’s report, over 5000 copies had been sold by August, 2007. The book has
been extensively cited in the ICA literature and seems to have evolved into the standard
text on the subject worldwide. In Google Scholar, the number of hits (in early 2008) is over
2300. In 2005, the Japanese translation of the book appeared (Tokyo Denki University
Press), and in 2007, the Chinese translation (Publishing House of Electronics Industry).

Another tangible contribution has been the public domain FastICA software package
(http://www.cis.hut.fi/projects/ica/fastica/). This is one of the few most pop-
ular ICA algorithms used by the practitioners and a standard benchmark in algorithmic
comparisons in ICA literature.

In the reporting period 2006 - 2007, ICA/BSS research stayed as one of the core
projects in the laboratory, with the pure ICA theory somewhat waning and being replaced
by several new directions. Chapter 3 starts by introducing some theoretical advances on
the FastICA algorithm undertaken during the reporting period, followed by a number
of extensions of ICA and BSS. The first one is the method of independent subspaces
with decoupled dynamics, that can be used to model complex dynamical phenomena.
The second extension is related to Canonical Correlation Analysis, and the third one
is nonnegative separation by the new Projective Nonnegative Matrix Factorization (P-
NMF) principle. An application of ICA to telecommunications is also covered. Then the
Denoising Source Separation (DSS) algorithm is applied to climate data analysis. This is
an interesting and potentially very useful application that will be under intensive research
in the future in the group.

Another way to formulate the BSS problem is Bayesian analysis. This is covered in
the separate Chapter 2.
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3.2 Convergence and finite-sample behaviour of the Fast-

ICA algorithm

Erkki Oja

In Independent Component Analysis, a set of original source signals are retrieved from
their mixtures based on the assumption of their mutual statistical independence. The
simplest case for ICA is the instantaneous linear noiseless mixing model. In this case, the
mixing process can be expressed as

X = AS, (3.1)

where X is a d × N data matrix. Its rows are the observed mixed signals, thus d is the
number of mixed signals and N is their length or the number of samples in each signal.
Similarly, the unknown d×N matrix S includes samples of the original source signals. A

is an unknown regular d× d mixing matrix. It is assumed square because the number of
mixtures and sources can always be made equal in this simple model.

In spite of the success of ICA in solving even large-scale real world problems, some
theoretical questions remain partly open. One of the most central questions is the theo-
retical accuracy of the developed algorithms. Mostly the methods are compared through
empirical studies, which may demonstrate the efficacy in various situations. However, the
general validity cannot be proven like this. A natural question is, whether there exists
some theoretical limit for separation performance, and whether it is possible to reach it.

Sometimes the algorithms can be shown to converge in theory to the correct solution
giving the original sources, under the assumption that the sample size N is infinite. In
[1], the FastICA algorithm was analyzed from this point of view. A central factor in the
algorithm is a nonlinear function that is the gradient of the ICA cost function. It may
be a polynomial, e.g. a cubic function in the case of kurtosis maximization/minimization,
but it can be some other suitable nonlinearity as well. According to [1], let us present an
example of convergence when the nonlinearity is the third power, and the 2 × 2 case is
considered for the mixing matrix A in model (3.1).

In the theoretical analysis a linear transformation was made first, so that the correct
solution for the separation matrix W (essentially the inverse of matrix A) is a unit matrix
or a variant (permutation and/or sign change). Thus the four matrix elements of W

convergence to zero or to ±1. The FastICA algorithm boils down to an iteration wt+1 =
f(wt) for all the four elements of the separation matrix. The curve in Figure 3.2 shows
the iteration function f(.) governing this convergence. It is easy to see that close to the
stable points, the convergence is very fast, because the iteration function is very flat.

In practice, however, the assumption of infinite sample size is unrealistic. For finite
data sets, what typically happens is that the sources are not completely unmixed but
some traces of the other sources remain in them even after the algorithm has converged.
This means that the obtained demixing matrix Ŵ is not exactly the inverse of A, and
the matrix of estimated sources Y = ŴX = ŴAS is only approximately equal to S. A
natural measure of error is the deviation of the so-called gain matrix G = ŴA from the
identity matrix, i.e., the variances of its elements.

The well-known lower limit for the variance of a parameter vector in estimation theory
is the Cramér-Rao lower bound (CRB). In [2], the CRB for the demixing matrix of the
FastICA algorithm was derived. The result depends on the score functions of the sources,

ψk(s) = −
d

ds
logpk(s) = −

p′k(s)

pk(s)
(3.2)
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Figure 3.1: Shape of the iteration function for separation matrix elements, kurtosis case

where pk(s) is the probability density function of the k-th source. Let

κk = E
[
ψ2

k(sk)
]
. (3.3)

Then, assuming that the correct score function is used as the nonlinearity in the FastICA
algorithm, the asymptotic variances of the off-diagonal elements (k, ℓ) of matrix G for the
one-unit and symmetrical FastICA algorithm, respectively, read

V
1U−opt
kℓ =

1

N

1

κk − 1
(3.4)

V
SY M−opt
kℓ =

1

N

κk + κℓ − 2 + (κℓ − 1)2

(κk + κℓ − 2)2
, (3.5)

while the CRB reads

CRB(Gkℓ) =
1

N

κk

κkκℓ − 1
. (3.6)

Comparison of these results implies that the algorithm FastICA is nearly statistically
efficient in two situations:

(1) One-unit version FastICA with the optimum nonlinearity is asymptotically efficient
for κk → ∞, regardless of the value of κℓ.

(2) Symmetric FastICA is nearly efficient for κi lying in a neighborhood of 1+, provided
that all independent components have the same probability distribution function, and the
nonlinearity is equal to the joint score function.

The work was continued to find a version of the FastICA that would be asymptotically
efficient, i.e. able to attain the CRB. This can be achieved in the orthogonalization stage
of the FastICA algorithm: instead of requiring strict orthogonalization, this condition is
relaxed to allow small deviations from orthogonality, controlled by a set of free parameters.
These parameters can be optimized so that the exact CRB is reached by the new algorithm,
given that the correct score functions are used as nonlinearities.
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Figure 3.2: The Mean Signal-to Inference Ratio of EFICA, compared to CRB and some
other ICA algorithms

The new efficient FastICA algorithm, dubbed EFICA, requires two phases because
the score functions have to estimated first. Once they have been estimated, the new
approximative orthogonalization scheme is run for a number of steps to reach the optimal
solution. Figure 3.2 shows the efficiency of EFICA. To make meaningful comparisons, 13
source signals were artificially generated, each having a generalized gamma density GG(α)
(where the value α = 2 corresponds to the Gaussian density). The α values ranged from
0.1 to 10 and their places are marked by asterisks in the figure. The Mean Signal-to-
Inference Ratio (SIR), both theoretical and experimental, obtained by EFICA is shown
in the image (uppermost curve). It is very close to the Cramér-Rao Bound attainable in
this situation, and far better than the Mean SIR attained by some other algorithms such
as plain FastICA, NPICA, or JADE.
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3.3 Independent subspaces with decoupled dynamics

Alexander Ilin

Independent subspace models extend the general source separation problem by allowing
groups (subspaces) sk of sources:

x(t) =
K∑

k=1

Aksk(t) . (3.7)

The sources within one group sk are assumed dependent while signals from different groups
are mutually independent. Similarly to classical BSS, subspaces can be separated exploit-
ing non-Gaussianity or temporal structures of the mixed signals. The technique presented
in [2] uses a first-order nonlinear model to model the dynamics of each subspace:

sk(t) = gk(sk(t− 1)) + mk(t) , k = 1, . . . ,K , (3.8)

Both the de-mixing transformation and the nonlinearities gk governing the dynamics are
estimated simulateously by minimizing the mean prediction error of the subspace dynam-
ical models (3.8). The optimization procedure can be implemented using the algorithmic
structure of denoising source separation [1].

The algorithm was tested on artificially generated data containing linear mixtures of
two independent Lorenz processes with different parameters, a harmonic oscillator and
two white Gaussian noise signals (see Fig. 3.3). The algorithm is able to separate the
three subspaces using only the information about their dimensionalities.
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Figure 3.3: Left: Artificially generated linear mixtures of three dynamical processes and
white noise signals. Right: Sources extracted by the technique extracting subspaces (sig-
nals 1–2, 3–5 and 6–9) with decoupled dynamics.
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3.4 Extending ICA for two related data sets

Juha Karhunen, Tomas Ukkonen

Standard linear principal component analysis (PCA) [2, 1] and independent component
analysis (ICA) [1] are both based on the same type of simple linear latent variable model
for the observed data vector x(t):

x(t) = As(t) =
n∑

i=1

si(t)ai (3.9)

In this model, the data vector x(t) is expressed as a linear transformation of the coeffi-
cient vector s(t) = [s1(t), s2(t), . . . , sn(t)]T . The column vectors ai, i = 1, 2, . . . , n, of the
transformation matrix A comprise the basis vectors of PCA or ICA, and the components
si(t) of the source vector s(t) are respectively principal or independent components cor-
responding to the data vector x(t). For simplicity, we assume that both the data vector
x(t) and the source vector s(t) are zero mean n-vectors, and that the basis matrix A is a
full-rank constant n× n matrix.

In PCA, the basis vectors ai are required to be mutually orthogonal, and the coefficients
si(t) to have maximal variances (power) in the expansion (3.9) [2, 1]. While in ICA the
basis vectors ai are generally non-orthogonal, and the expansion (3.9) is determined under
certain ambiguities from the strong but often meaningful condition that the coefficients
si(t) must be mutually statistically independent or as independent as possible [1].

Canonical correlation analysis (CCA) [2] is a generalization of PCA for two data sets
whose data vectors are denoted by x and y. CCA seeks for the linear combinations of the
components of the vectors x and y which are maximally correlated. In this work, we have
considered a similar expansion as (3.9) for both x and y:

x = As, y = Bt (3.10)

We then try to find in a similar manner as in ICA the maximally independent and de-
pendent components from x and y by using higher-order statistics. As a result, we get an
ICA style counterpart for canonical correlation analysis.

These ideas are introduced in [3], and discussed in more detail in the journal paper
[4]. The methods introduced in these papers are somewhat heuristic, buut seem to work
adequately both for artificially generated data and in a difficult cryptographic problem. We
also consider in these papers practical measures for statistical dependence or independence
of two random variables.
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3.5 ICA in CDMA communications

Karthikesh Raju, Tapani Ristaniemi, Juha Karhunen, Erkki Oja

In wireless communication systems, like mobile phones, an essential issue is division of the
common transmission medium among several users. A primary goal is to enable each user
of the system to communicate reliably despite the fact that the other users occupy the
same resources, possibly simultaneously. As the number of users in the system grows, it
becomes necessary to use the common resources as efficiently as possible.

During the last years, various systems based on CDMA (Code Division Multiple Ac-
cess) techniques [1, 2] have become popular, because they offer several advantages over
the more traditional FDMA and TDMA schemes based on the use of non-overlapping
frequency or time slots assigned to each user. Their capacity is larger, and it degrades
gradually with increasing number of simultaneous users who can be asynchronous. On
the other hand, CDMA systems require more advanced signal processing methods, and
correct reception of CDMA signals is more difficult because of several disturbing phe-
nomena [1, 2] such as multipath propagation, possibly fading channels, various types of
interferences, time delays, and different powers of users.

Direct sequence CDMA data model can be cast in the form of a linear independent
component analysis (ICA) or blind source separation (BSS) data model [3]. However,
the situation is not completely blind, because there is some prior information available.
In particular, the transmitted symbols have a finite number of possible values, and the
spreading code of the desired user is known.

In this project, we have applied independent component analysis and denoising source
separation (DSS) to blind suppression of various interfering signals appearing in direct se-
quence CDMA communication systems. The standard choice in communications for sup-
pressing such interfering signals is the well-known RAKE detection method [2]. RAKE
utilizes available prior information, but it does not take into account the statistical in-
dependence of the interfering and desired signal. On the other hand, ICA utilizes this
independence, but it does not make use of the prior information. Hence it is advisable to
combine the ICA and RAKE methods for improving the quality of interference cancella-
tion.

In the journal paper [4], various schemes combining ICA and RAKE are introduced
and studied for different types of interfering jammer signals under different scenarios. By
using ICA as a preprocessing tool before applying the conventional RAKE detector, some
improvement in the performance is achieved, depending on the signal-to-interference ratio,
signal-to-noise ratio, and other conditions [4].

All these ICA-RAKE detection methods use the FastICA algorithm [3] for separating
the interfering jammer signal and the desired signal. In the case of multipath propagation,
it is meaningful to examine other temporal separation methods, too. We have also applied
denoising source separation [5] to interference cancellation. This is a semi-blind approach
which uses the spreading code of the desired user but does not require training sequences.
The results of the DSS-based interference cancellation scheme show improvements over
conventional detection.

All the results achieved in this project have been collected and presented in the mono-
graph type doctoral thesis [6].
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3.6 Non-negative projections

Zhirong Yang, Jorma Laaksonen, Zhijian Yuan, Erkki Oja

Projecting high-dimensional input data into a lower-dimensional subspace is a fundamen-
tal research topic in signal processing, machine learning and pattern recognition. Non-
negative projections are desirable in many real-world applications where the original data
are non-negative, consisting for example of digital images or various spectra. It was pointed
out by Lee and Seung [1] that the positivity or non-negativity of a linear expansion is a
very powerful constraint, that seems to lead to sparse representations for the data. Their
method, non-negative matrix factorization (NMF), minimizes the difference between the
data matrix X and its non-negative decomposition WH. The difference can be measured
by the Frobenius matrix norm or the Kullback-Leibler divergence.

Yuan and Oja [2] proposed the projective non-negative matrix factorization (P-NMF)
method which replaces H in NMF with WTX. This actually combines the objective of
principal component analysis (PCA) with the non-negativity constraint. The P-NMF al-
gorithm has been applied to facial image processing [4] using a popular database, FERET
[3]. Figure (3.4) visualizes the basis images learned by NMF and P-NMF. The empiri-
cal results indicate that P-NMF is able to produce more spatially localized, part-based
representations of visual patterns.

Another attractive feature of the NMF and P-NMF methods is that their multiplica-
tive update rules do not involve human-specified parameters such as the learning rate.
Thus the analysis results are completely data driven. In [5] we have studied how to con-
struct multiplicative update rules for non-negative projections based on Oja’s iterative
learning rule. Our method integrates the multiplicative normalization factor into the orig-
inal additive update rule as an additional term which generally has a roughly opposite
direction. As a consequence, the modified additive learning rule can easily be converted to
its multiplicative version, which maintains the non-negativity after each iteration. With
this technique, almost identical results to P-NMF can be obtained by imposing the non-
negativity constraint on linear Hebbian networks.

The derivation of our approach provides a sound interpretation of learning non-negative
projection matrices based on iterative multiplicative updates—a kind of Hebbian learning
with normalization. A convergence analysis is provided by interpreting the multiplicative

Figure 3.4: NMF (left) and P-NMF (right) bases of 16 dimensions.
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updates as a special case of natural gradient learning. Furthermore, our non-negative
variant of linear discriminant analysis (LDA) can serve as a feature selector. Its kernel
extension can reveal an underlying factor in the data and be used as a sample selector.
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3.7 Climate data analysis with DSS

Alexander Ilin, Harri Valpola, Erkki Oja

An important task for which statistical methods are used in climate research is seeking
physically meaningful interpretations of observed climate variability, for example, identifi-
cation of ‘modes’ in the observational record. Statistical techniques which are widely used
in this task include principal component analysis (PCA) or empirical orthogonal functions
(EOFs), extended EOFs, and Hilbert EOFs [1]. Although EOFs have probably been the
most popular tool for an efficient representation of climate records, EOF representation
may be intuitively meaningless in a meteorological sense [2]. Therefore several techniques
of rotated PCA/EOF have been proposed to ensure easier interpretation of the results.
The rotation is realized using a linear transformation of principal components such that a
suitably chosen criterion of “simple structure” is optimized. The objective is to find a data
representation allowing for compact scientific explanation of a variable with a smaller num-
ber of principal components. Different assumptions on simplicity yield different rotation
techniques.

We extend the concept of rotated PCA by introducing the concept of “interesting
structure”. In our case, the goal of exploratory analysis is to find signals with some
specific structures of interest. They may for example manifest themselves mostly in specific
variables, which exhibit prominent variability in a specific timescale etc. An example of
such analysis can be extracting clear trends or quasi-oscillations from climate records. The
procedure for obtaining suitable rotations of EOFs can be based on the general algorithmic
structure of denoising source separation (DSS) [3].

In our initial studies, we tested the effectiveness of the proposed methodology to dis-
cover climate phenomena which are well-known in climatology, using very little informa-
tion about their properties. One of the most prominent results is the extraction of the
El Niño–Southern Oscillation phenomenon, using only a very generic assumption of its
prominent variability in the interannual timescale (see Figs. 3.5-3.6) [4]. Other prominent
signals found in this analysis might correspond to significant climate phenomena as well;
for example, the second signal with prominent interannual variability somewhat resembles
the derivative of the El Niño index (see Fig. 3.5).

Several other techniques for studying prominent climate variations have been intro-
duced in our papers [4, 5]. Analysis which separates prominent quasi-oscillations in cli-
mate records by their frequency contents gives a meaningful representation of the slow
climate variability as combination of trends, interannual oscillations, the annual cycle and
slowly changing seasonal variations [4]. The technique presented in [5] can be used for
studying slow variability present in fast weather fluctuations.

The results of the climate research were presented at the Fifth Conference on Artificial
Intelligence Applications to Environmental Science as part of the 87th Annual Meeting
of the American Meteorological Society (best student presentation) [6] and at the 10th
International Meeting on Statistical Climatology.
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Figure 3.5: Left: The time courses of the two interannual phenomena found in global temperature,
air pressure and precipitation data using DSS. Right: The index used in climatology to measure
the strength of El Niño (marked as EN) and the derivative of the El Niño index (marked as dEN).
The similarity is striking for the upper signals and some common features can be observed in the
lower signals.
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Figure 3.6: Spatial patterns corresponding to the most prominent interannual phenomenon found
in climate data. The maps display the regions in which the effect of the phenomenon is most promi-
nent. The maps contain many features traditionally associated with El Niño–Southern Oscillation
phenomenon.
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