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15.1 Failure management with data analysis

Miki Sirola, Jukka Parviainen, Jaakko Talonen, Golan Lampi, Tuomas Alhon-

noro, Risto Hakala, Timo Similä

Early fault detection with data-analysis tools in nuclear power plants is one of the main
goals in NoTeS-project (test case 4) in TEKES technology program MASI. The industrial
partner in this project is Teollisuuden Voima Oy, Olkiluoto nuclear power plant. Data
analysis is carried out with real failure data, training simulator data and design based
data, such as data from isolation valve experiments. A control room tool, visualization
tools and various visualizations are under development.

A toolbox for data management using PCA (Principal Component Analysis) and
WRLS (Weighted Recursive Least Squares) methods has been developed [1]. Visual-
izations for e.g. trends, transients, and variation index to detect leakages are used. Sta-
tistically significant variables of the system are detected and statistical properties and
important visualizations are reported. Data mining methods and time series modelling
are combined to detect abnormal events.

X-detector tool based on feature subset selection has been developed. The idea is to do
real-time monitoring and abnormality detection with efficient subsets. Measuring depen-
dencies and cluster separation methods are used in variable selection in this visualization
tool.
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Figure 15.1: X-detector tool user interface: leakage in the main circulation pump. SOM
visualization combined with statistical Kolmogorov-Smirnov test, process flow diagram
and selected process variable graphs.
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Decision support prototype DERSI for failure management in nuclear power plants
is under development. It is a control room tool for operator or analysis tool for expert
user. It combines neural methods and knowledge-based methods. DERSI utilizes Self-
Organizing Map (SOM) method and gives advice by rule-based reasoning. The operator
is provided by various informative decision support visualizations, such as SOM maps for
normal data and failure data, state U-matrix, quantization error for both component level
and state U-matrix, time-series curves and progress visualizations. DERSI tool has been
tested in fault detection and separation of simulated data [2].

A separate study of process state and progress visualizations using Self-Organizing
Map was also done [3]. All visualizations developed in the project will be collected to
make a first proposal for wide monitoring screens.
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15.2 Cellular network performance analysis

Kimmo Raivio, Mikko Multanen, Pasi Lehtimäki

Structure of mobile networks gets more and more complicated when new network tech-
nologies are added to the current ones. Thus, advanced analysis methods are needed to
find performance bottlenecks in the network. Adaptive methods can be utilized, for ex-
ample, to perform hierarchical analysis of the networks, detecting anomalous behavior of
network elements and to analyse handover performance in groups of mobile cells.

Combination of the Self-Organizing Map and hierarchical clustering methods can be
utilized to split the analysis task into smaller subproblems in which detection and visual-
ization of performance degradations is easier. The method consists of successive selection
of a set of cellular network performance indicators and hierarchical clustering of them.
Initially only a couple of key performance indicators are utilized and later some more
specific counters are used. Thus, the root cause of degradation is easier to find [1]. The
method can be utilized both in general network perfromance analysis and in more specific
subareas like soft handover success rate [3].

(a) (b)

Figure 15.2: Architecture of a cellular network (a) and simple view of the hierarchical
analysis algorithm (b).

In outlier detection as well neural as statistical methods can be used to find out network
elements with decreased performance or otherwise anomalous traffic profile. Statistical
approaches may include both parametric and non-parametric methods. An example of
parametric method is Gaussian mixture model. Correspondingly, nearest-neighbor and
Parzen windows are non-parametric methods. A neural method called Neural gas is very
similar to the statistical approaches and it can be used also in this task [2].

It can be said, that neural and other learning methods can be utilized in the analysis
of complicated performance degradation problems in cellular networks. The analysis tools
can be built in a way to require only a minimal amount of knowledge of the network itself.
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15.3 Predictive GSM network optimization

Pasi Lehtimäki, Kimmo Raivio

In this study, the focus is on the final step of the mobile network monitoring procedure,
that is, on making adjustments to configuration parameters so that the amount of pre-
dictable, regularly occurring performance degradations or faults is minimized. In order to
automate the configuration parameter optimization, a computational method to evaluate
the performance of alternative configurations must be available. In data-rich environments
like cellular networks, such predictive models are most efficiently obtained with the use of
past data records.

In blocking prediction, the interest is to compute the number of blocked requests at
different conditions. This can be based on the use of well known Erlang-B formula. The
expected value for the number of blocked requests is obtained by multiplying the number
of arriving requests with the blocking probability, leading to B = λp(Nc|λ, µ, Nc). The
expected value for the congestion time is C = p(Nc|λ, µ, Nc) and the expected value for
the number of channels in use is M =

∑Nc

n=0 np(n| λ, µ, Nc).
In [2], it was shown that the Erlang-B formula does not provide accurate predictions for

blocking in GSM networks if low sampling rate measurements of arrival process are used
in the model. More traditional regression methods can be used for the same purpose with
the assist of knowledge engineering approach in which Erlang-B formula and regression
methods are combined. With the use of Erlang-B formula, the dependencies between
B, C and M that remain the same in each base station system need not be estimated from
data alone. The data can be used to estimate other relevant and additional parameters
that are required in prediction. In [2] and [1], a method to use Erlang-B formula and
measurement data to predict blocking is presented. The regression techniques are used
to estimate the arrival rate distribution describing the arrival process during short time
periods. The Erlang-B formula is used to compute the amount of blocking during the
short time periods.

Suppose that the time period is divided into Ns segments of equal length. Also, assume
that we have a vector λ = [0 1∆λ 2∆λ . . . (Nλ − 1)∆λ] of Nλ possible arrival rates per
segment with discretization step ∆λ. Let us denote the number of blocked requests during
a segment with arrival rate λi with Bi = λip(Nc|λi, µ, Nc), where p(Nc|λi, µ, Nc) is the
blocking probability given by the Erlang distribution. Also, the congestion time and the
average number of busy channels during a segment with arrival rate λi are denoted with
Ci = p(Nc|λi, µ, Nc) and Mi =

∑Nc

n=0 np(n|λi, µ, Nc). In other words, the segment-wise
values for blocked requests, congestion time and average number of busy channels are
based on the Erlang-B formula.

Now, assume that the number of segments with arrival rate λi is θi and
∑

i θi = Ns.
Then, the cumulative values over one hour for the number of requests T , blocked requests
B, congestion time C and average number of busy channels M can be computed with
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(15.1)

or in matrix notation Xθ = Y.
Now, the problem is that the vector θ is unknown and it must be estimated from the

data using the observations of Y and matrix X which are known a priori. Since the output
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vector Y includes variables that are measured in different scales, it is necessary to include
weighting of variables into the cost function. By selecting variable weights according to
their variances estimated from the data, the quadratic programming problem

minθ

{

1

2
θ

THθ + fT
θ

}

(15.2)

w.r.t 0 ≤ θi ≤ Ns, i = 1, 2, ..., Nλ, (15.3)
Nλ
∑

i=1

θi = Ns (15.4)

is obtained where f = −XTWTWY and H = XTWTWX include the weighting matrix
W. In other words, the goal is to find the vector θ that provides the smallest prediction
errors for variables T, B, C and M .

The optimization problem could be solved for each of the Nd observation vectors sep-
arately, leading to Nd solution vectors θ for hour h. Since we are interested in long-term
prediction of blocking, we should somehow combine the solution vectors so that behavior
common to all solution vectors are retained and non-regular properties of the demand are
given less attention.

Let us denote the ith solution vector for hour h with θ
(i)
h and the jth element of the

corresponding solution vector with θ
(i)
jh . Since θ

(i)
jh described the number of segments with

arrival rate λ = λj during ith observation vector at hour h, the probability for a random
segment during ith observation period to have an arrival rate λ = λj can be computed

from θ
(i)
jh with p

(i)
jh = θ

(i)
jh/Ns, where Ns is the number of segments in a period.

The probability for observing a segment with arrival rate λ = λj at hour h would
become

pjh =
1

NdNs

Nd
∑

i=1

θ
(i)
jh . (15.5)

Now, the arrival rates λj and their probabilities pjh for hour h form a probabilistic model.
Let us define a column vector

θh
seg 7→hour

= phNs (15.6)

that maps the segment-wise candidate arrival rates λj to the total number of arrived
requests T in a single one hour time period with

T = λ θh
seg 7→hour

. (15.7)

Note that the parameter vector θh,seg 7→hour can also be used to map the vector B =
[B1 B2 . . . BNλ

] of segment-wise blocking candidates to the total number of occurrences
of blocked requests during one period. Similarly, the cumulative values for the average
number of busy channels and the congestion time can be computed.

References
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15.4 Learning from environmental data

Mika Sulkava, Jaakko Hollmén

Data analysis methods play an important role in increasing our knowledge of the environ-
ment as the amount of data measured from the environment increases. Gaining an insight
into the condition of the environment and the assessment of the its future development
under the present and predicted environmental scenarios requires large data sets from
long-term monitoring programs. In this project the development of forests in Finland
has been studied using data from various forest monitoring programs. In addition, the
global changes and drivers of the CO2 exchange of forests have been studied based on
eddy covariance data from a high number of sites around the world.

The work in this project includes collaboration with a high number of parties. During
2006–2007, there has been cooperation with two research units of the Finnish Forest
Research Institute, University of Antwerp, and numerous researchers in the carbon cycling
community all around the world. The latest journal contributions are joint work of a team
of more than a dozen researchers from nine countries in three continents.

Plant nutrients play an integral role in the physiological and biochemical processes of
forest ecosystems. The effects of nitrogen and sulfur depositions on coniferous forests have
been studied using the Self-Organizing Map. It was concluded that evidence for deposition-
induced changes in needles has clearly decreased during the nineties. The results of the
effects of the depositions have been presented in conferences [1, 2].

Various environmental factors and past development affect the growth and nutritional
composition of tree needles as they are aging. Different regression models have been
compared to find out how these effects could be modeled effectively and accurately during
the second year of the needles [3]. We found that sparse regression models are well suited
for this kind of analysis. They are better for the task than ordinary least squares single
and multiple regression models, because they are both easy to interpret and accurate at
the same time.

Good quality of analytical measurements techniques is important to ensure the relia-
bility of analyses in environmental sciences. We have combined foliar nutrition data from
Finland and results of multiple measurement quality tests from different sources in order
to study the effect of measurement quality on conclusions based on foliar nutrient analy-
sis [4, 5]; see Figure 15.3. In particular, we studied the use of weighted linear regression

Weighted regression model

UncertaintiesIUFRO interlaboratory comparison

ICP forests foliar nutrition data

ICP forests interlaboratory comparison
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Figure 15.3: Fusion of measurement quality metadata from three different sources and
forest nutrition data made it possible to use weighted regression models for trend detection.
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models in detecting trends in foliar time series data and showed that good precision of the
measurement techniques may decrease the time needed to detect statistically significant
trends in environmental time series by several years.

The dependencies between the atmospheric CO2 exchange of the world’s forests and
different environmental factors and between the annual radial growth of coniferous trees
and environment and properties of the trees have been studied since 2006. First results
concerning the significance of photosynthesis in differences between yearly CO2 exchange
have been published lately [6, 7]. Also, the effects of nitrogen deposition on CO2 exchange
in forests have been studied [8].

Finally, the effects of environmental conditions on radial growth of trees has been stud-
ied. Methods for automatic detection of the onset and cessation of radial growth [9] and
for model selection and estimation based on expert knowledge [10] have been developed.
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altering the mineral nutrient composition of Norway spruce and Scots pine needles
in Finland? In Johannes Eichhorn, editor, Proceedings of Symposium: Forests in a
Changing Environment – Results of 20 years ICP Forests Monitoring, pages 80–81,
Göttingen, Germany, October 2006.
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15.5 Parsimonious signal representations in data analysis

Jarkko Tikka, Jaakko Hollmén, Timo Similä

The objective in data analysis is to find unsuspected and practical information from large
observational data sets and to represent it in a comprehensible way. While utility is
a natural starting point for any analysis, understandability often remains a secondary
goal. A lot of input variables are available for a model construction in many cases. For
instance, in the analysis of microarray data the number of input variables may be tens of
thousands. It is impossible to evaluate all the possible combinations of input variables in
a reasonable time. In this research, improved understandability of data-analytic models is
sought by investigating sparse signal representations that are learned automatically from
data. Naturally, the domain expertise is useful in many cases in validation of results, but
it may also be biased by established habits and, thus, prevent making novel discoveries.

In a time series context, parsimonious modeling techniques can be used in estimating
a sparse set of autoregressive variables for time series prediction [7]. We presented a filter
approach to the prediction: first we selected a sparse set of inputs using computationally
efficient linear models and then the selected inputs were used in the nonlinear prediction
model. Furthermore, we quantified the importance of the individual input variables in the
prediction. Based on experiments, our two-phase modeling strategy yielded accurate and
parsimonious prediction models giving insight to the original problem.

The problem of estimating sparse regression models in a case of multi-dimensional
input and output variables has been investigated in [4]. We proposed a forward-selection
algorithm called multiresponse sparse regression (MRSR) that extends the Least Angle
Regression algorithm (LARS) [1]. The algorithm was also applied to the task of selecting
relevant pixels from images in multidimensional scaling of handwritten digits. The MRSR
algorithm was presented in a more general framework in [5]. In addition, experimental
comparisons showed the strengths of MRSR against some other input selection methods.
The input selection problem for multiple response linear regression was formulated as a
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Figure 15.4: Solution paths of the importance factors of input variables. In the subfigure
on the left panel, vertical lines indicate the breakpoints of the MRSR algorithm, i.e the
points where a new input variable is added to the subset of selected input variables. All
the solution paths end to the ordinary least square solution.
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convex optimization problem to minimize the error sum of squares subject to a sparsity
constraint in [6]. The proposed simultaneous variable selection (L2-SVS) method is related
to L∞-SVS method [10]. We also reported an efficient algorithm to follow the solution path
as a function of the constraint parameter. In Figure 15.4, the solution paths of MRSR,
L2-SVS, and L∞-SVS are illustrated using a data set, which includes six input variables.
The most important inputs are x2, x1, and x6 according to all the three methods. The
multiresponse sparse regression is studied further in [2, 3].

The artificial neural networks are an appropriate choice to model dependencies in non-
linear regression problems, since they are capable to approximate a wide class of functions
very well. A disadvantage of neural networks is their black-box characteristics. We have
developed input selection algorithms for radial basis function (RBF) networks in order to
improve their interpretability [8, 9]. A backward selection algorithm (SISAL-RBF), which
removes input variables sequentially from the network based on the significance of the
individual regressors, was suggested in [9]. The calculation of ranking of inputs is based
on partial derivatives of the network. Only 15% of the available inputs were selected by
the SISAL-RBF without sacrificing prediction accuracy at all in the case of real world data
set [9]. In [8], each input dimension was weighted and a sparsity constraint was imposed
on the sum of the weights. The resulting constrained cost function was optimized with
respect to the weights and other parameters using alternating optimization approach. The
optimum weights describe the relative importance of the input variables. Applications to
both simulated and benchmark data produced competitive results.
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[4] T. Similä and J. Tikka. Multiresponse sparse regression with application to multi-
dimensional scaling. Proceedings of the 15th International Conference on Artificial
Neural Networks (ICANN 2005), Vol. 3967 (part II) of Lecture Notes in Computer
Science, Springer, pp. 97–102, Warsaw, Poland, September, 2005.
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