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9.1 The speech recognition tasks and systems

This chapter is divided into four categories that describe our research activities in:
1.Acoustic modeling, 2.Language modeling, 3.Large vocabulary decoders, and

4.Speech retrieval. The division is natural both because it covers four of the major
subfields in speech recognition research and because it describes the main components of
a typical large vocabulary continuous speech recognition (LVCSR) system (Figure 9.1).
The acoustic models produce the probabilities of different phonemes, the language models
take into account the co-occurrence probabilities of different words or morphemes, the de-
coder joins these two streams of information into recognition hypothesis, and the retrieval
engine utilizes these outputs to represent the speech in a convenient form for searching
and browsing. Thus, all our research topics focus on the same framework and can be
integrated into a single working LVCSR system.

Figure 9.1: The main components of the LVCSR system.

Our goal in LVCSR research has for several years been to develop new machine learning
algorithms for each of the subfields and build a complete state-of-art recognizer to evaluate
the new methods and their impact. Originally, the recognizer was constructed for fluent
and planned speech such as Finnish newsreading, where language models covering a very
large vocabulary are required. Besides newsreading, other example tasks are political and
academic speeches and other radio and television broadcasts where the language used is
near the written style. Sofar, we have not seriously attempted to recognize spontaneous
conversations, because enough Finnish training texts for learning the corresponding style
do not exist. Our main training corpus for language modeling is the Finnish Language
Bank at CSC. For acoustic modeling we use voice books, Finnish Broadcast Corpus at
CSC and the SPEECON corpus.

In addition to the recognition of Finnish, we have performed experiments in English,
Turkish and Estonian. To make this possible we have established research relations to
different top speech groups in Europe and U.S., e.g. University of Colorado, Interna-
tional Computer Science Institute, IDIAP, University of Edinburgh, University of Sheffield,
Bogazici University, and Tallinn University of Technology. The forms of collaboration have
included researcher exchanges, special courses, workshops and joint research projects. We
have also participated in several top international and national research projects funded
by EU, Academy of Finland, Tekes, and our industrial partners. In the close collaboration
with our Natural Language Processing group 10 we are also organizing an international
competition called Morphochallenge to evaluate the best unsupervised segmentation algo-
rithms for words into morphemes for LVCSR and language modeling in different languages.
This challenge project is funded by EU’s PASCAL network.
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9.2 Acoustic modeling

Phoneme modeling and speaker adaptation

Acoustic modeling in automatic speech recognition (ASR) means building statistical mod-
els for some meaningful speech units based on the feature vectors computed from speech.
In most systems the speech signal is first chunked into overlapping 20-30 ms time windows
at every 10 ms and the spectral representation is computed from each frame. A commonly
used feature vector consists of mel-frequency cepstral coefficients (MFCC) which are the
result of the discrete cosine transform (DCT) applied to the logarithmic mel-scaled filter
bank energies. Local temporal dynamics can be captured by concatenating the first and
second order delta features (time differences) to the basic feature vector.

After the feature extraction the feature sequence is typically modeled using hidden
Markov models (HMM). In basic form each phoneme is modeled by a separate HMM, where
the emission distributions of the HMM states are Gaussian mixtures. An example is shown
in Figure 9.2. In practice, however, we need to take the phoneme context into account,
so that for each phoneme there are separate HMMs for various phoneme contexts. Even
though the Gaussian mixture components are restricted to have only diagonal covariance
matrices, the number of parameters with such a complex acoustic model in a typical state-
of-the-art ASR system is very high, in order of millions of parameters. This gives emphasis
to proper complexity control, so that we get the most out of the available training data.

/t/ /a/ /i/

Figure 9.2: Each phoneme is modeled with a hidden Markov model, usually consisting of
three states. The state distributions are modeled by Gaussian mixture models.

The problem of selecting the optimal model complexity is a difficult one, but it can
be avoided by using some other model training criterion instead of the usual maximum
likelihood (ML) principle. In [1] two more advanced training principles, maximum a
posteriori (MAP) and variational Bayesian (VB), were compared against the ML principle.
These two methods can avoid overfitting in case of too complex a model, which is the
major drawback in ML training. This was also validated experimentally, where the speech
recognition performance started to degrade with ML trained models when the number of
parameters was increased, whereas MAP and VB trained models continued to work well.
The VB principle can also be used to select the proper model complexity in respect to the
training data, without using auxiliary data.

Hidden Markov models have several drawbacks with respect to speech modeling. One
of those is the modeling of the durations of speech segments. Standard HMMs allow only
minimal modeling of duration variations, although in some languages (e.g. in Finnish) the
durations can be the main cues in discriminating between certain phonemes. To better take
the durations into account we experimented in [2] several extensions to standard HMMs
which allow more precise models for the segmental durations. It was found out that already
a relatively simple duration model was enough to improve the speech recognition results.

In the past most of our speech recognition experiments have been carried out with



146 Speech recognition

Method Word error rate (%) Phoneme error rate (%)

Baseline 30.5 9.8
VTLN 29.3 9.1
cMLLR 25.3 7.3
SAT/cMLLR 24.2 6.8

Table 9.1: Speech recognition results for several adaptation methods: No adaptation
(Baseline), Vocal Tract Length Normalization (VTLN), Constrained Maximum Likelihood
Linear Regression (cMLLR) and Speaker Adaptive Training with cMLLR (SAT/cMLLR).

speaker dependent models, meaning the acoustic models have been trained specifically for
one person. Recently we have been able to move to more demanding speaker independent
experiments, which is also more realistic in view of many applications. The lack of speaker
dependency adds further demands for the acoustic models. We have therefore implemented
several adaptation techniques to our speech recognizer, and tested their effectivity with
our speech data. Some results are shown in Table 9.1.

Recognition of reverberant speech

In the acoustic modeling for large vocabulary continuous speech recognition mostly speech
in relatively noise free condition was concentrated (see Sect. 9.2). In the field of noise
robust speech recognition, we have been developing techniques to recognition of reverber-
ant speech jointly with the University of Sheffield [4]. Our technique is based to missing
data approach [5], in which a conventional Gaussian mixture model classifier is adapted
to allow different treatments of reliable and unreliable regions of speech. In our approach
the regions of speech spectrum, which are either relatively clean or badly contaminated
by reverberation are indexed and used to construct a time frequency mask to the missing
data speech recognizer. Masks are produced by applying modulation filtering to detect
strong speech regions not contaminated by reverberation (see Fig. 9.3). Furthermore, we
were able to improve the performance slightly by combining the missing data recognizer
to a conventional recognizer using cepstral features. More information about techniques
to handle reverberation in the auditory scene analysis as well as in speech recognition can
be read from our recent review article [3].
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Figure 9.3: Auditory spectrograms (left panels) and missing data masks (right panels).
The spectrogram for a ”clean” unreverberated (top-left) and a highly reverberant (bottom
left) speech utterance are shown. The right panels show the corresponding missing data
masks for the reverberant utterance. Firstly, an ”oracle mask” based on prior knowledge
(top-right) of the reverberated regions shows how an (nearly) ideal mask should look like.
Secondly, a mask produced using our model (with no prior knowledge) is shown. Black
and white regions indicate reliable and unreliable regions, respectively.
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9.3 Language modeling

Splitting words into fragments

For Finnish, estimating the language model probabilities for words is difficult since there
is a vast number of different word forms. For example, a single verb has theoretically
thousands of inflected word forms.

The natural way to attack the problem is to split words into smaller fragments and
build the language models on the fragments instead of whole words. Since it is not obvious
how the words should be split, we have studied what kind of word fragments are optimal
for speech recognition systems. Experiments in Finnish recognition tasks indicate that
an unsupervised data-driven splitting algorithm called Morfessor (see Section 10.1) can
produce word fragments that work even better in speech recognition than morphemes
based on Finnish grammar [1, 2].

Since the Morfessor algorithm is language independent, it can also be applied to speech
recognition of other languages. Experiments in Turkish and Estonian recognition tasks
confirm the result that models based the Morfessor algorithm improve recognition accu-
racy.

A growing method for constructing an n-gram model

The length of the word history used by the n-gram model is traditionally set to a fixed n.
For n > 3 this often leads to prohibitively big models. We have developed an algorithm
based on the Minimum Description Length principle [3], which learns a suitable word
history length for each case [4]. The factors affecting the choice of histories are: 1) Does
the model get much better if we use a longer word history for modeling an n-gram? and 2)
Do we have enough data to estimate the probabilities for the longer history? This method
can make considerably smaller n-gram models which equal modeling power of the fixed n

models.

A related method is the pruning of n-gram models, for example entropy based pruning
[5]. The benefits of our approach compared to pruning methods are that at no time we
need to store the full model. This allows us to train very high order models. Our exper-
iments show, that the growing method seems to outperform the entropy based pruning
in practically all experiments [6]. For example in Finnish speech recognition experiments,
the growing method gives at least 15% lower word error rate (relative) for reasonable n-
gram model sizes, when both methods use equal model size. The n-gram models can be
efficiently stored in a tree structure (Fig. 9.4).

P(a)
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P(a | a) P(b | a)

P(b)
BO(b)

P(a | b)
BO(b,a)

P(a | b,a) P(b | b,a)
ba

b aa

a b

Figure 9.4: The tree structure for storing an n-gram model.
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Combining the growing method and clustering

In addition to the pruning of the n-gram models, a common way to decrease the size of
the n-gram models is clustering of model units or sequences of them. In a similar manner
that the MDL principle can be used to choose a suitable length of n-gram history for
each case, it can be used to insert n-gram histories that give similar predictions into same
equivalence classes [7]. Compared to the baseline of the growing method, for a model of
an equal size, some accuracy may be lost, but substantially more n-grams can be included
into the model.

In order to make the clustering computationally fast, the number of different model
units cannot be very large. Suitable small lexicons are easy to construct for any language
with the Morfessor algorithm (Section 10.1). Preliminary experiments show that with
some optimizations, even extensive searches for the nearest history clusters are possible.
This differs from e.g. one related method [8], where only nearby parts of the tree structure
are searched for similar prediction distributions.

Combining methods for language models

In many task the best language modeling results have been achieved when different lan-
guage models have been used together [9]. Several combination methods have been pre-
sented in the literature, but a thorough investigation of the methods has not been done.

In [10, 11], the combination methods that have been used with language models are
studied. Also, a new approach based on likelihood density function estimation using his-
tograms is presented. In addition to theoretical consideration, four combining methods for
four language models are evaluated in speech recognition experiments and word prediction
experiments using Finnish news articles.

In the perplexity experiments, all combining methods produced statistically significant
improvement compared to the 4-gram model that worked as a baseline. The best result,
46 % improvement to the 4-gram model, was achieved when combining several language
models together by using the new bin estimation method. In the speech recognition
experiments, 4 % reduction to the word error and 7 % reduction to the phoneme error
was achieved.
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9.4 Large vocabulary decoder

The goal of the speech recognition is to find the word sequence that is the most probable
one given the acoustic model, language model and the observed speech. Because the num-
ber of possible word sequences is extremely high, the search is performed incrementally in
time, and improbable hypotheses are pruned as early as possible. The module responsible
for performing this search is called the decoder.

During the recent years, we have actively developed a decoder for very large vocab-
ularies. In order to take the acoustic dependencies better into account, the stack based
decoder has been replaced by an efficient time-synchronous token-pass decoder [1]. The
efficiency is derived from a compact search network which can utilize the redundancies in
the acoustic models. The decoder is able to model correctly also the context dependent
phonemes which occur across lexical units. Compared to our previous decoder, this results
in a 24% relative improvement of the phoneme error rate.

The efficiency of decoders continues to be an important issue in speech recognition, as
more and more complex models of acoustics and language are used to obtain the possible
best recognition accuracy. Some new ways to restrict the search space without affecting
the recognition accuracy too much were developed in [2]. These so called pruning criteria
use different information available during the search to discard those path hypotheses
which no longer seem feasible. The research also resulted in a method with which we can
avoid hand tuning the numerous parameters affecting the efficiency/accuracy tradeoff in
the decoding process.

References

[1] J. Pylkkönen: An Efficient One-pass Decoder for Finnish Large Vocabulary Con-
tinuous Speech Recognition, In Proceedings of the 2nd Baltic Conference on Human

Language Technologies (HLT’2005), April 4–5, 2005, Tallinn, Estonia, pp. 167–172.

[2] J. Pylkkönen: New Pruning Criteria for Efficient Decoding, In Proceedings of the 9th

European Conference on Speech Communication and Technology (Interspeech 2005),
September 4–8, 2005, Lisboa, Portugal, pp. 581–584.



152 Speech recognition

9.5 Spoken document retrieval

Speech retrieval and indexing

One important application of automatic speech recognition is spoken document retrieval
which means the task of finding interesting segments from recorded speech. Large amount
of information is produced in spoken form, for example radio and TV broadcasts, and
there is a need for tools that can be used to search this data. Spoken document retrieval
systems combine speech recognition and information retrieval technologies. The special
properties of the Finnish language, such as the large number of inflected word forms, affect
both of these parts and methods developed for other languages cannot be used as such.
Our research is focused on retrieval of Finnish speech, but the methods are hoped to work
also on other languages with similar properties.

Previously, word-based and phone-based approaches have been used. The former suf-
fers from limited vocabulary and the latter from high error rates. In [1, 2], we presented a
baseline retrieval system for Finnish that uses the speech recognizer based on morpheme-
like subword units. The recognizer can achieve low error rates while providing a potentially
unlimited vocabulary. Retrieval performance of spoken news was found to be close to that
of the human reference transcripts. The morpheme like units were found to work well also
as index terms, providing equal performance to base formed words.

Recognition errors degrade retrieval performance, but there are measures that can
be used to reduce their effect. For example, the recognizer can be modified to include
alternative recognition results in the transcripts, or queries can be expanded by adding
relevant words from a parallel text corpus. Query expansion was found to bring the level of
performance to the same as text document retrieval, even for transcriptions with relatively
high error rates. [3, 4]

Figure 9.5: Overview of a spoken document retrieval system.

Speech segmentation

The development of automatic segmentation methods of speech and audio is increasingly
important to allow automatic handling of growing archives of spoken audio, e.g. recorded
meetings, radio or television programs. Audio material can be segmented based on various
levels of description. On metadata level audio can be classified e.g. to speech vs. multiple
classes of non-speech. Furthermore, segments containing only speech can be classified
based on gender, speaker identity and, finally, into subunits of speech, such as, sentences,
words or phonemes. Segmentation can be performed either in a supervised or unsupervised
manner. In the supervised segmentation, the task is to align temporal structure of speech
to the existing transcription. In the unsupervised segmentation the transcript does not
exist, and the recognizer classifies the segments freely.
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Figure 9.6: Speech modulation spectrum (top) against target classification (bottom).

The group’s speech recognition tools [1] were applied to supervised phoneme level
segmentation to align existing transcriptions to the corresponding speech audio. This line
of research was extended in a student project to speech that is only partially transcribed.
Moreover, practical speech recognition tasks have prompted researchers in the group to
develop unsupervised techniques [5] to speaker segmentation. These methods were also
used to address the needs of other speech researchers in the Helsinki University, Tampere
University of Technology and University of Turku.

A new research project in speech segmentation in the metadata level was initiated
during April 2005. In this project, we are developing techniques to extract speech segments
from audio stream, and speech segments based on gender in an unsupervised manner. The
project was started with development of feature techniques using a common Gaussian
mixture model classifier. In our new approach, we have applied two types of feature
presentations of speech, first, which depicts short-term (≈ 16 ms) speech spectrum and
the second that describes long term temporal modulations (≈ 1 s) of speech applying a
computation of modulation spectrum (see Fig. 9.6).
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