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7.1 Content-based image retrieval by self-organizing maps

Erkki Oja, Jorma Laaksonen, Markus Koskela, Ville Viitaniemi, Zhirong Yang,

Mats Sjöberg, Hannes Muurinen

Content-based image retrieval (CBIR) has been a subject of intensive research effort for
more than a decade now. It differs from many of its neighboring research disciplines in
computer vision due to one notable fact: human subjectivity cannot totally be isolated
from the use and evaluation of CBIR systems. In addition, two more points make CBIR
systems special. Opposed to such computer vision applications as production quality con-
trol systems, operational CBIR systems would be very intimately connected to the people
using them. Also, effective CBIR systems call for means of interchanging information con-
cerning images’ content between local and remote databases, a characteristic very seldom
present, e.g., in industrial computer vision.

PicSOM

The methodological novelty of our neural-network-based CBIR system, PicSOM [1, 2],
is to use several Self-Organizing Maps in parallel for retrieving relevant images from a
database. These parallel SOMs have been trained with separate data sets obtained from
the image data with different feature extraction techniques. The different SOMs and their
underlying feature extraction schemes impose different similarity functions on the images.
In the PicSOM approach, the system is able to discover those of the parallel SOMs that
provide the most valuable information for each individual query instance.

Instead of the standard SOM version, PicSOM uses a special form of the algorithm, the
Tree Structured Self-Organizing Map (TS-SOM) [3]. The hierarchical TS-SOM structure
is useful for large SOMs in the training phase. In the standard SOM, each model vector
has to be compared with the input vector in finding the best-matching unit (BMU). With
the TS-SOM one follows the hierarchical structure which reduces the complexity of the
search to O(log n). After training each TS-SOM hierarchical level, that level is fixed and
each neural unit on it is given a visual label from the database image nearest to it.

Self-organizing relevance feedback

When we assume that similar images are located near each other on the SOM surfaces,
we are motivated to exchange the user-provided relevance information between the SOM
units. This is implemented in PicSOM by low-pass filtering the map surfaces. All rele-
vant images are first given equal positive weight inversely proportional to the number of
relevant images. Likewise, nonrelevant images receive negative weights that are inversely
proportional to their number. The relevance values are then summed in the BMUs of the
images and the resulting sparse value fields are low-pass filtered.

Figure 7.1 illustrates how the positive and negative relevance responses, displayed
with red and blue map units, respectively, are first mapped on a SOM surface and how
the responses are expanded in the low-pass filtering. As shown on the right side of the
figure, the relative distances of SOM model vectors can also be taken into account when
performing the filtering operation [4]. If the relative distance of two SOM units is small,
they can be regarded as belonging to the same cluster and, therefore, the relevance response
should easily spread between the neighboring map units. Cluster borders, on the other
hand, are characterized by large distances and the spreading of responses should be less
intensive.
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Figure 7.1: An example of how positive and negative map units, shown with red and
blue marks on the top-left figure, are low-pass filtered. Two alternative methods exist;
either we ignore (bottom-left figure) or take into account (bottom-right figure) the relative
distances between neighboring SOM model vectors. In the top-right figure, the relative
distances are illustrated with gray level bars so that a darker shade of gray corresponds
to a longer relative distance between two neighboring map units.

Finally, the set of images forming the result of the query round is obtained by summing
the relevance responses or qualification values from all the used SOMs. As a result,
the different content descriptors do not need to be explicitly weighted as the system
automatically weights their opinions regarding the images’ similarity and relevance.

User interaction feature

Relevance feedback can be seen as a form of supervised learning to adjust subsequent
query rounds by using information gathered from the user’s feedback. It is essential that
the learning takes place during one query, and the results are erased when starting a new
one. This is because the target of the search usually changes from one query to the next,
and so the previous relevances have no significance any more. This is therefore intra-query
learning.

Relevance feedback provides information which can also be used in an inter-query or
long-term learning scheme. The relevance evaluations provided by the user during a query
session partition the set of seen images into relevant and nonrelevant classes with respect to
that particular query target. The fact that two images belong to the same class is a cue for
similarities in their semantic content. This information can be utilized by considering the
previous user interaction as metadata associated with the images and use it to construct
a user interaction or relevance feature, to be used alongside with the visual features. This
method was presented and experimented with in [5]. An example of a resulting SOM is
illustrated in Figure 7.2. In the figure, a 16×16-sized SOM trained with user interaction
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Figure 7.2: The image labels of a 16×16-sized SOM trained with user interaction data.

data is shown. It can be observed that images with similar semantic content have been
mapped near each other on the map.

In some cases, the image database may also contain manually assigned or implicit
annotations. These annotations describe high-level semantic content of the image and
often contain invaluable information for retrieval purposes. Therefore, it is useful to
note that the user-provided relevance evaluations discussed above are notably similar to
these annotations. In particular, keyword annotations can be seen as high-quality user
assessments and the presented method can be readily utilized also for these annotations.

Use of segmented images

The general problem of image understanding is intrinsically linked to the problem of image
segmentation. That is, if one understands an image one can also tell what the different
parts of it are. Segmentation thus seems to be a natural part of image understanding. As
the objects and entities in the images usually hierarchically decompose into sub-objects,
the segmentations defined by the images form hierarchical segmentation trees.

For an automatic system segmenting an image is never trivial and the results seldom
correspond to the real objects in the picture. But even so segmentation may be useful in
CBIR, because different, visually homogeneous regions somehow characterize the objects
and scenes in the image. The existing approaches differ mainly in the fashion the segment-
wise similarities are combined to form image-wise similarities used in the retrieval. The
hierarchical structure of segmentations is usually ignored.

The PicSOM system uses the results of unsupervised segmentation by generalizing the
original algorithm so that not only the entire images but also the image segments are seen
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as objects in their own right. The segments are also considered to be sub-objects of the
images they are a part of. The relevance feedback process is modified so that when an
image is marked as relevant all its sub-objects (segments) are also marked as relevant.
Then, after calculating qualification values for all the objects on the different TS-SOMs,
the qualification values of all the sub-objects are summed to their parent objects. Finally,
the values obtained from different maps are again summed up to form the final image-wise
qualification values. In the algorithm, different levels of segmentation hierarchies can be
considered simultaneously. The approach can be used also for salient image parts that
have been identified by detecting interest points in the images.

In practical applications and preliminary experiments we have observed that for most
of the used ground truth image classes, the retrieval precision obtained by using both entire
and segmented images together excels over that obtained by using either ones alone. In
forthcoming systematic experiments we will further explore the usefulness of these various
approaches for exploiting the spatial decomposition of the images into subparts on one
hand, and combining the approaches on the other hand.

In addition to interactive CBIR, the PicSOM system has been used off-line to investi-
gate the connection between semantic concepts and results of unsupervised segmentation.
In particular, we have considered the keyword focusing problem where the system au-
tonomously learns to attribute annotating keywords to specific segments. The system
discovers the segment-keyword connections from example images where the annoting key-
words are given on per-image basis. An example of a relevance focusing setting is shown
in Figure 7.3 where pieces of clothing are localised in a database of fashion images.

Figure 7.3: Focusing keywords “hat” and “red trousers”.

Interactive facial image retrieval

Most existing face recognition systems require the user to provide a starting image, which
is however not practical e.g. when searching for a criminal based on a witness’ power of
recall. Interactive facial image retrieval, which are mainly based on learning the relevance
feedback from the user, is a potential approach to address this problem.

The early appearance of the first subject hit is critical for the success of the retrieval.
Unlike content-based image retrieval systems based on general images, the query precision
on facial images suffers from the problem of extremely small sizes of the subject classes
[6]. If only images that depict the correct person are regarded as relevant, many pages
of only non-relevant images would be displayed. Because the negative responses from the
user in the early rounds provide little semantic information, the iteration progresses in a
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Figure 7.4: A 64 × 64 DSOM example shown on the left. The white points represent
the class members of mustache yes and black points for mustache no. The normal SOM
without discriminative preprocessing is shown on the right for comparison.

nearly random manner.
We have proposed a novel method which adaptively learns partial relevance during the

interactive retrieval. First, we extended the PicSOM CBIR system by replacing the mem-
bership of a subject class with that of a semantic class as the new relevance criterion until
the first subject hit appears. Second, we applied supervised learning as a preprocessing
step before training the Self-Organizing Maps so that the resulting SOMs have stronger
discriminative power. Figure 7.4 visualizes an example Discriminative Self-Organizing
Map (DSOM) of two semantic classes, mustache yes and mustache no. The empirical
results on FERET database [7] have shown that the number of displayed images can be
significantly reduced by employing these two strategies [8].

Different ways for obtaining a DSOM exist. We applied Fisher’s linear discriminant
analysis (LDA) as a preprocessing step before training the SOMs. More advanced methods
for extracting the discriminative components of data are now under development.

Multimodal hierarchical objects

The basic ideas of CBIR can be expanded to the more general concept of content-based
information retrieval if we also consider objects of other types than images, for example
text, video, and multi-media objects in general. The only restriction is that we must be
able to extract some kind of low-level statistical feature vectors from the new data objects.
For example, text data similarity can be evaluated with the n-gram method.

A possibly even more important development has been the incorporation of the context
and relationships of data items as hierarchical objects in PicSOM. For example a web page
with text, embedded images and links to other web pages can be modeled as a hierarchical
object tree with a web page object as parent and the text, links and images as children.

The PicSOM system has been extended to support such general multimodal hierar-
chical objects and a method for relevance sharing between these objects has been im-
plemented [9]. This means that the relevance assessments originally received from user
feedback will be transferred from the object to its parents, children and siblings. This
means for example, if we want to search for an image of a cat from a multimedia message
database, we can let the system compare not only the images but also the related textual
objects. If the reference message text contains the word “cat” we can find images which
are not necessarily visually similar, but have related texts containing the same keyword.

The hierarchical object paradigm has been applied to many problems, such as web-
page structures and e-mail message retrieval. Most recently the PicSOM group took part
in the NIST TRECVID 2005 workshop where we successfully applied these methods to
video retrieval [10]. In addition to the hierarchical object method we also applied class
models as a way of representing semantic concepts. The class models were previously used
for image group annotation in [11], whereas in the TRECVID context we are interested
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in video shots of the test collection that have the highest likelihood of being relevant to a
given concept.

The multi-part hierarchy for video shots used for indexing the TRECVID 2005 collec-
tion is illustrated in Fig. 7.5. The video shot itself is considered as the main or parent
object. The keyframes (one or more) associated with the shot, the audio track, and
ASR/MT text are linked as children of the parent object. All object modalities may have
one or more SOMs or other feature indices, and thus all objects in the hierarchy may have
links to a set of associated feature indices.

Figure 7.5: The hierarchy of video and multimodal SOMs.

Class models were created by utilizing semantic classifications of the training set videos
provided by NIST, such as a list of clips showing an explosion or fire. Feature vectors of
objects belonging to such class models can be mapped as impulses onto to the correspond-
ing SOM surfaces, providing an estimate of the true class distribution. In retrieval the
sign of the impulses were adjusted to represent relevant (positive) and non-relevant (neg-
ative) concepts. The sparse value fields on the maps are low-pass filtered to spread the
information which increases the probability that objects mapped to nearby SOM units
will be retrieved.

In the high-level feature extraction task we applied the class model representations
to find video clips representing different concepts, applying an SFS-type feature selection
scheme for each concept separately. The search tasks were run with the PicSOM system
by using predefined search topics in three ways: with user interaction, with some manual
tweaking of the parameters and without user interaction. To our delight, the PicSOM
results compared very well with the other systems taking part in the TRECVID 2005
evaluation. For example, in the automatic search tasks, the PicSOM results were clearly
above the median in all but one topic.
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7.2 Content-based retrieval of defect images

Jussi Pakkanen, Jukka Iivarinen, Rami Rautkorpi

A need for efficient and fast methods for content-based image retrieval (CBIR) has in-
creased rapidly during the last decade. The amount of image data that has to be stored,
managed, browsed, searched, and retrieved grows continuously on many fields of industry
and research.

In this project we have taken a noncommercial CBIR system called PicSOM, and
applied it to several databases of surface defect images. PicSOM has been developed
in our laboratory at Helsinki University of Technology to be a generic CBIR system for
large, unannotated databases. We have made some modifications to the original PicSOM
system that affect mostly feature extraction and visualization parts of PicSOM. As an
extra problem-specific knowledge we have segmentation masks for each defect image. This
information is utilized in PicSOM so that feature extraction is only done for defect areas
in each defect image.

Overview of the method

Interpretation of defect images is a demanding task even to an expert. The defect images
concerned in this work contain surface defects, and they were taken from a real, online
process. Currently we have two major database types: paper and metal surface defects.
Both of these types contain several different defect classes (e.g. dark and light spots, holes,
scratches, oli stains and so on) that are fuzzy and overlapping, so it is not possible to label
defects unambiguously.

In the present work we have adopted the PicSOM system as our content-based image
retrieval (CBIR) system and embedded the defect image databases into PicSOM. PicSOM
has several features that make it a good choice for our purposes. The most important of
these is the fact, that PicSOM can effectively combine search results of different features.
This makes adding new features fast and efficient.

Features for defect characterization Several types of features can be used in Pic-
SOM for image querying. These include features for color, shape, texture, and structure
description of the image content. When considering defect images, there are two types of
features that are of interest: shape features and internal structure features. Shape fea-
tures are used to capture the essential shape information of defects in order to distinguish
between differently shaped defects, e.g. spots and wrinkles. Internal structure features are
used to characterize the gray level and textural structure of defects.

One of the advantages of PicSOM is its open architecture. This makes it simple to
add new features to the system. Originally we used simple descriptors for shape, texture
features based on the co-occurrence matrix, and the gray level histogram. We use the
following set, which consists mainly of features from the MPEG-7 standard, with some
additional features that we have developed for the shape description of surface defects.

Scalable Color descriptor is a 256-bin color histogram in HSV color space, which is
encoded by a Haar transform.

Color Layout descriptor specifies a spatial distribution of colors. The image is divided
into 8 × 8 blocks and the dominant colors are solved for each block in the YCbCr
color system. Discrete Cosine Transform is applied to the dominant colors in each
channel and the DCT coefficients are used as a descriptor.
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Color Structure descriptor captures both color content and the structure of this content.
It does this by means of a structuring element that is slid over the image. The
numbers of positions where the element contains each particular color is recorded
and used as a descriptor. As a result, the descriptor can differentiate between images
that contain the same amount of a given color but the color is structured differently.

Edge Histogram descriptor represents the spatial distribution of five types of edges in
16 sub-images. The edge types are vertical, horizontal, 45 degree, 135 degree and
non-directional, and they are calculated by using 2 × 2-sized edge detectors for the
luminance of the pixels. A local edge histogram with five bins is generated for each
sub-image, resulting in a total of 80 histogram bins.

Homogeneous Texture descriptor filters the image with a bank of orientation and scale
tuned filters that are modeled using Gabor functions. The first and second moments
of the energy in the frequency domain in the corresponding sub-bands are then used
as the components of the texture descriptor.

Shape feature For shape description, we use our own problem-specific shape feature set
that was developed for surface defect description. It consists of several simple de-
scriptors calculated from a defect’s contour. The descriptors are convexity, principal
axis ratio, compactness, circular variance, elliptic variance, and angle.

Edge Co-occurrence Matrix was developed for enhanced shape description. It is sim-
ilar to the Gray Level Co-occurrence Matrix, but instead of a gray level intensity
image, it is computed from an edge image. In this respect it is related to the Edge
Histogram, but the entire image is processed at once and eight edge directions at
45 degree intervals are detected. The result is an 8 × 8 matrix representing the
frequencies of edge direction pairs that have a given displacement.

Contour Co-occurrence Matrix was developed in conjunction with the Edge Co-
occurrence Matrix. It is computed from the chain-code representation of the contour
of a defect. Each link in the chain is a step between two successive pixels on the
contour, with eight possible link directions. The result is an 8×8 matrix representing
the frequencies of link direction pairs that have a given displacement.

These features were found to work very well on classification experiments using a smaller,
pre-classified data base. Similar or better performance is obtained when the Edge Co-
occurrence Matrix and the Contour Co-occurrence Matrix are substituted for the Edge
Histogram descriptor and the earlier shape feature set.

Experiments

The problem at hand is now the following one: Given a new defect or a set of defects,
retrieve similar defects that might have appeared previously. The retrieval is based on
shape and internal structure features, so there is no need for manual annotation or labeling.
The largest defect database has almost 45000 defect images that were taken from a real,
online process. The images have different kinds of defects, e.g. dark and light spots, holes,
and wrinkles. They are automatically segmented beforehand so that each defect image
has a gray level image and a binary segmentation mask that indicates defect areas in the
image. The image database was provided by our industrial partner, ABB oy.

Two example queries in Figure 7.6 show that the system works quite well. Under the
TS-SOMs are the images selected by the user (the so called query images), and at the
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Figure 7.6: Example PicSOM queries.

bottom are the images returned by the PicSOM system. All returned images are visually
similar to the query images. The system retains a similar level of success when queried
with different types of defects. The true power comes from combining the maps. The
PicSOM engine combines the various maps in a powerful manner, yielding good results.

Conclusions

In this project a noncommercial content-based image retrieval (CBIR) system called Pic-
SOM is applied to retrieval of defect images. New feature extraction algorithms for shape
and internal structure descriptions are implemented in the PicSOM system. The results
of experiments with almost 45000 surface defect images show that the system works fast
with good retrieval results.
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7.3 Alterable volume flow in the use of input deformations

for a massive Gaussian process smoothing

Ramūnas Girdziušas, Jorma Laaksonen

The use of input deformations with nonlinear regression models is relatively unpopular
for a reason that they introduce another degree of nonlinearity into the model identifica-
tion. However, in a massive regression with low-dimensional inputs (d=1,2,3) they have
a visual representation and enhance the predictive power of simple stationary isotropic
homogeneous models. Considering Gaussian process regression, input deformations are
linked directly to the smoothing properties of the covariance functions:

Cov [f(xi), f(xj)] 7→ Cov[f(xi − u(xi)), f(xj − u(xj))]. (7.1)

A direct maximum likelihood estimation of the displacement field u(x) is hardly possible
because it is unclear what smoothness priors to utilize and how to maintain the model
space within the computationally feasible level.

We are investigating a likelihood-ascending nonparametric estimation of displacements
which allow to alter the deformation volume and is computationally feasible. A suggestion
is to utilize covariance functions of a univariate Brownian motion and extend them to
a higher-dimensional case via an additive operator splitting [4]. Input deformations of
such a model do not alter the structure of the inverse covariance matrix. It will remain
tridiagonal [1] which makes the evaluation of the log-likelihood particularly easy. The
Gaussian process log-likelihood Lu can then be maximized by embedding the displacement
field into a simplified fluid flow [3]. This amounts to performing a non-gradient descent
on −Lu + Rλ,µ, where the Lamé functional Rλ,µ is a positive definite quadratic form of
the spatial derivatives of the displacements. However, it does not act as a regularization
functional:

L(ut + dut) ≈ L(ut) + ∇uL(ut)
Tdut, (7.2)

Rλ,µ(ut + dut) 7→ Rλ,µ(ut) + duT
t ∇u∇

T
uRλ,µ(ut)dut , (7.3)

The constants λ and µ define the compressibility of the flow. This approach has been
tested in a synthetic problem of a bivariate regression where it is equally competitive with
a robust but not visual regression techniques [3] and in the estimation of an optical flow,
which does not reach the state of the art but is not dramatically far from it [2].
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7.4 Stopping criteria for nonlinear diffusion filters

Ramūnas Girdziušas, Jorma Laaksonen

Nonlinear diffusion filters preserve discontinuities without requiring a prior knowledge of
their approximate locations and reveal the optimal basis of a signal in an unsupervised
manner [1]. Potential applications include a fast retrospective multiple change-point de-
tection in nuclear magnetic response measurements of well log data, restoration of aerial
images of buildings, fingerprint enhancement and optical flow.

We consider a nonlinear variation-diminishing diffusion of an image y(x), defined by

∂tf = ∇ · (φθ(||∇f ||)∇f) , s.t. ∇f |Ω = 0, (7.4)

with f ≡ ft(x), f0(x) = y(x), x ∈ Ω = [0, 1]d, d = 1, 2. The univariate diffusivity function
φθ(z) ≥ 0 depends on a few parameters θ and it is such that φ′

θ(z)/(z) is continuous and
decreasing.

Eq. (7.4) produces a scale-space of images and needs systematic criteria for the selection
of the optimal stopping time. A possible remedy to this problem is to extend Eq. (7.4) in
order to define a joint probability measure for the observations, diffusion outcome and the
optimal stopping time, which could be accomplished within the framework of Itô diffusions.
This turns out to be a formidable task.

Among a variety of heuristic stopping principles proposed in the last decades, one
of the simplest and the most stable criterion stops the diffusion when the filtering out-
come becomes uncorrelated with the noise estimate between the observations and a true
signal [4]. Motivation for the decorrelation is based on the theory of a linear diffusion.

We have shown [1] that the decorrelation principle is a particular case of a maximum
likelihood estimation in an additive white Gaussian noise when the assumption of a true
signal is the Gaussian process defined by

Ft ∼ GP
(

0, θ0 (Tθ − Id)−1
)

, (7.5)

where θ0 is a known constant, Tθ denotes the operator that maps an initial image to the
diffusion outcome, it depends on the unknown diffusivity parameters θ and the stopping
time t. Such a model is useful because: (i) it explains why decorrelating criterion can be
negative in nonlinear diffusion and gives its precise bounds, (ii) shows that the decorrela-
tion principle overestimates the optimal stopping time, and (iii) provides better stopping
criteria [2, 3].
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