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6.1 Introduction

We develop statistical machine learning methods for extracting useful regularities from
large, high-dimensional data sets. We have divided this task of statistical data mining or
exploration into three subtypes of problems:

• Unsupervised mining, where regularities or dependencies within one data set are
sought. Standard clustering, component models, and data mining belongs to this
category. We have recently developed new nonlinear projection methods for infor-
mation visualization.

• Supervised mining, where one data set supervises the mining of another. We have
introduced a principle of learning metrics, where the distance metric is learned in a
supervised way, to guide subsequent unsupervised learning. Hence, this line of work
has alternatively been coined supervised unsupervised learning.

• Dependency mining or exploration, where the supervision is symmetric and the task
is to find dependencies between data sets. In this subtask we have introduced new
clustering and component models.

Unsupervised mining is the most common task of these three but also the most difficult,
because it suffers from the garbage in—garbage out problem; unsupervised learning can-
not distinguish relevant from irrelevant variation in a data set. Supervised mining and
dependency mining are two solutions to this problem that are applicable in different kinds
of settings. In supervised mining, variation within one of the sets is assumed irrelevant
and the other set is assumed relevant enough to be useful for supervising the other. An
example is analysis of measurement data of cancer tissues where known cancer labels (the
other set) are clearly extremely relevant, and variation in tissue samples not related to
cancer classes is irrelevant.

In dependency mining the within-set variation is assumed irrelevant in all data sets,
and only between-set variation is important. An example is measurement of several noisy
signals from a common source, when characteristics of the noise are not known. More
examples are given in Section 5.
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6.2 Supervised unsupervised learning

Many unsupervised methods rely on a distance measure that tells how far apart two data
samples are. Usually the measure is a simple one such as Euclidean distance. However,
such measures do not take into account that two samples can differ in many ways, and not
all differences are relevant for the analysis. How relevant a difference is depends on what
the analyst is interested in; the relevance can vary in different parts of the data space.

In supervised settings we can learn what is relevant by learning a distance measure,
that is, a metric. The idea of learning such metrics has been coined the learning metrics
principle [1].

We assume there is paired data: the primary data x that we want to explore are paired
to auxiliary data c that guide the exploration. The learning metrics principle assumes that
variation of the primary data is important only to the extent it causes variation in auxiliary
data.

Technically, we use an information-geometric definition: the distance d between two
close-by data points x and x + dx is defined as the difference between the corresponding
distributions of c, measured by the Kullback-Leibler divergence DKL, i.e.,

d2
L(x,x + dx) ≡ DKL(p(c|x)‖p(c|x + dx)) = dxT J(x)dx , (6.1)

where J(x) is the Fisher information matrix. The metric is learned from the data that
defines the distributions p(c|x). This yields a Riemannian metric that preserves the topol-
ogy of the feature space, yet can flexibly change what is locally relevant. The preservation
of topology and the capability to ignore noisy dimensions not related to the auxiliary data
are demonstrated (with empirical experiments) in [2].

In practice, the learning metrics principle can be applied in two ways. One can estimate
p(c|x) first and then plug the new metric, computed from the estimates, into a standard
unsupervised method. Another possibility is to more directly insert the new metric into
the cost function of a suitable method. Examples of both are given below.

Visualization and component models

The self-organizing map learns to visualize multidimensional data on a two-
dimensional regular grid by finding and optimizing winner units for data samples. The
winner is the closest map unit for a particular sample, and we simply choose the winner
by distance in the learning metric. A practical approximation to the distance that in
principle is defined by path integrals is the so-called T -point distance approximation [2]
defined as

dT (x1,x2) =
1

T

T−1
∑

i=0

(

rT J

(

x +
i

T
r

)

r

)1/2

(6.2)

where r = x2 − x1. This approximation assumes the shortest path is a line and computes
the local metric at T points between the start and end point.

The SOM in learning metric has been shown shown to outperform SOM in Euclidean
metric, as well as a supervised variant of SOM [2]. It provides visualizations that tell
more about the auxiliary data, and on top of that allows visualizing how relevant the
input features locally are. Example visualizations of SOMs computed using the learning
metric are provided in Figure 6.1.

Metric multidimensional scaling methods (MDS) are used for visualizing similari-
ties of data samples based on a pairwise distance matrix. They construct a low-dimensional
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Figure 6.1: Example applications of SOM in learning metrics. a Analysis of financial
data reveals that the importance of profitability (left) in avoiding bankruptcies depends
on the state of the company, here illustrated by the actual profitability indicator (right).
b Similar written characters are grouped more tighly in learning metrics (left) than in
Euclidean metric (right). c Part of yeast gene expression data visualization emphasizing
the functional categories.

representation for the data that aims to preserve the distance matrix, and are ideal can-
didates for applying computationally more intensive approximations of learning metrics
distances since the distances need to be computed only once.

In this kind of application the assumption of minimal path being a line can be relaxed.
Instead, a graph whose edge weights are pairwise T -point distances between data points
is formed and a graph search for the minimal path is performed, providing a piece-wise
linear path. In [2] this approximation generalized a specific MDS method called Sammon’s
mapping.

Relevant Component Analysis is a new data analysis tool that finds components of
data in the learning metrics. Instead of unsupervised components like principal compo-
nents, we wish to find components that contain information about, or are relevant for,
classes of the data. Such components can be used to reduce dimensionality, in order to
explore and visualize class separation, and to study the contribution of original data vari-
ables to it. We call the task of finding the components Relevant Component Analysis
(RCA).

A classical method for this task is Linear Discriminant Analysis (LDA), which finds
linear components but makes restrictive assumptions about the data distribution. We have
introduced an improved method that removes the assumptions and finds components by
optimizing a simple nonparametric generative model for class labels.

Technically, the method maximizes a simple likelihood criterion:
∑

(x,c)

log p̂(c|WT x) (6.3)

where the x are samples, c are their classes, p̂ is the nonparametric estimator, and the
columns of W are the component directions. This is equivalent (asymptotically, when p̂ is
consistent) to maximizing the mutual information of the component projections and the
class labels. The components can be interpreted (asymptotically and approximately) as
principal components in learning metrics.

The main merits of the new method, compared to other generalizations of LDA, are its
theoretical simplicity and good performance. The method has been applied to exploration
of sound samples from different phonemes [3], expressions of genes from different functional
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Figure 6.2: Left: The new method, RCA, finds a component that is more informative of
classes than the classical methods. Center: two components of gene expression data that
are informative of functional classes (only two classes shown). Right: two components of
MCMC samples that show differences between sampling chains.

classes [4], and posterior samples from different MCMC chains (see below). Figure 6.2
shows examples on both toy data and real applications.

Visualizing convergence problems in MCMC simulation. Probabilistic generative
modeling is one of the theoretical foundations of current mainstream machine learning and
data analysis. Bayesian inference is potentially very powerful but closed-form solutions
are seldom available. Inference has to be based on either approximation methods or
simulations with Markov Chain Monte Carlo (MCMC) sampling.

The main practical problem of MCMC is how to assess whether the simulation has
converged. The resulting samples come from the true distribution only after convergence.
It turns out [5] that the main multivariate convergence measure, the multivariate poten-
tial scale reduction factor (MPSRF) developed by Brooks and Gelman [6], equals the cost
function of a one-dimensional linear discriminant analysis (LDA), a method that discrim-
inates between data classes. Traditional methods of visualizing MCMC simulations do
not scale up to large models with lots of parameters. As the cost function of LDA is the
equivalent to the MPSRF measure, we can use LDA to focus on features that are relevant
to convergence, and thus reduce the number of visualizations.

LDA assumes that each class is normally distributed with the same covariance matrix
in each class. This does not hold in general, in particular not before MCMC convergence
for small data. To address the above problem, we suggest to complement LDA-based
analysis with RCA [5].

Clustering

Discriminative clustering is a method for clustering continuous data so that the clus-
ters become informative of auxiliary data paired with the data samples. While originally
motivated by its asymptotic equivalence to vector quantization in learning metrics [7], the
current algorithm is a probabilistic algorithm that maximizes the dependency of a contin-
gency table and handles parameter uncertainty in a Bayesian manner [8]. It provides a
link between learning metrics and generative modeling.

The key observation is that from the viewpoint of clustering, the parameters defining
class distributions within clusters are not interesting and can then be marginalized out.
This leads to a cost function only depending on the cluster prototype vectors {mj}:

LDC({mj}) ∝
∑

ij

log Γ(n0
i + nji) −

∑

j

log Γ(N0 + Nj) , (6.4)
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where nji denotes the number of samples in the cluster j with the value of auxiliary variable
c = i. The parameters n0

i arise from a Dirichlet prior, and Nj =
∑

i nji, N0 =
∑

i n0
i .

In [8] it was shown that (6.4) can be efficiently optimized by a conjugate gradient
algorithm operating on a slightly modified cost function (the counts are smoothed). It
gave performance comparable to directly optimizing the original cost function with a time-
consuming simulated annealing algorithm. On top of that, the model can be regularized
by two alternative ways, either by an information theoretic equalization of cluster sizes, or
by a Bayesian way of modeling also the primary data to improve generalization. The latter
provides an interesting compromise between modeling conditional and joint densities, and
the experimental results show that with small training data sets including a term modeling
the covariates improves the accuracy.

Finite-data sequential information bottleneck Count data such as frequencies of
words in text documents can be represented as a table of co-occurrence counts, called
a contingency table. For clustering such data, successful Information Bottleneck-based
methods treat the table as a probability distribution. However, in practice the table is
sparsely populated by the finite number of counts, and it is necessary to take the sampling
uncertainty into account.

We have introduced a new rigorous method for this. It is a variant of the sequential
Information Bottleneck algorithm [9], with a new cost function directly defined for counts.
The new cost function, a Bayes factor, compares the posterior probabilities of two alter-
native probabilistic models for the contingency table. It turns out that we can integrate
over model parameters which takes the finite co-occurrence numbers into account. On
the other hand, if there is much data, the cost function becomes equivalent to that of the
sequential Information Bottleneck.

The new formulation extends discriminative clustering, defined earlier for continuous
data, to count data, for which there exist powerful optimization algorithms. The new
method, finite sequential Information Bottleneck (fsIB; [10]) outperformed the previous
sequential Information Bottleneck in clustering sparse subsets of document corpora, as
measured by a precision measure with respect to known categories of the documents.
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6.3 Dependency exploration

In dependency exploration we assume that the relevant aspects of data are shared by
several information sources. This assumption opens up a new principled framework to
combine various information sources. In particular, the effects due to data set-specific
noise can be filtered out. Instead of having to specify a model for the noise, the data
analyst needs to be able to choose a set of data sources.

The key idea in dependency exploration is to build models for two (or more) infor-
mation sources such that their statistical dependency is maximized. Given two sets of
real-valued vectorial features from two sources, x ∈ R

n and y ∈ R
m, and two represen-

tations for them, v = fx(x) and w = fy(y), dependency exploration models maximize
some estimate of the statistical dependency between v and w. One of the most popular
estimators is mutual information I(V,W ) =

∑ ∑

p(v,w) log p(v,w)
p(v)p(w) . The main drawback

of mutual information is that it is defined for (known) probability distributions, and may
have strong biases when estimated from the finite data of practical applications. We have
developed several methods that (i) use mutual information, or (ii) use a finite-data version
of mutual information.

Associative clustering

Associative clustering (AC) [1] is a clustering method suitable for dependency exploration
of two data sources. It clusters each data source separately, such that the dependency
between the clusterings is maximized. If the different sources describe the same object,
then the clusterings are as similar as possible in the sense of maximizing statistical depen-
dency, but yet the objects may belong to different clusters in different contexts (sources)
if necessary.

The dependencies between the two clusterings are represented with a two-way con-
tingency table formed by cross-tabulation of the data items in the two sets of clusters.
AC is an extension of discriminative clustering to two continuous margin spaces, and the
techniques similar to discriminative clustering can be applied, including the regularization
methods and smoothed partitions. The uncertainty in the clustering result can be dealt
with by bootstrap. Figure 6.3 gives on overview of AC.

Generalized canonical correlation analysis

The classical canonical correlation analysis (CCA) finds maximally correlating compo-
nents from two feature sets. It is equivalent to finding mutual information-maximizing
components if the data is normally distributed. A generalized version of CCA, gCCA,
extends the method to several feature sets [2].

We have developed a novel way to use the gCCA to integrate multiple data sets in such
a way that their statistical dependencies are maximally preserved in the new, integrated
representation [3]. As gCCA is computationally efficient it can be used as a preprocessing
step for more complicated dependency analysis tasks, such as associative clustering. A
sample application is given in Section 5.

Non-parametric dependent components

Canonical correlation analysis can also be extended to capture more general dependencies
instead of mere correlation. In [4] we introduced a method coined dependent component
analysis that estimates the mutual information (or more presicely, the likelihood ratio
between dependent and independent hypotheses) using non-parametric density estimates
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Figure 6.3: Associative clustering (AC) in a nutshell. Two data sets are clustered into
margin clusters represented as Voronoi regions with prototype vectors. A one-to-one
correspondence between the two data sets exists: each sample is presented in both sets.
As each sample falls to one cluster in each data set, we get a contingency table by placing
the two sets of clusters as rows and columns, and by counting samples in each combination
of row and column clusters. AC by definition finds Voronoi prototypes that maximize the
dependency seen in the contingency table. Maximization of dependency in a contingency
table results in a maximal amount of counts not explainable by the margin distributions
which can then be interpreted as maximally dependent clusters.

Figure 6.4: Dependency can be measured by studying how closely a joint distribution
(left) can be approximated by a product of marginal distributions (right). For independent
variables the distributions are identical. Here the gray density estimate in both pictures
is computed using Gaussian mixtures, and the representations have relatively clear but
non-linear dependency.

in the projection space, and maximizes the estimated dependency with respect to the
parameters of the projections using a conjugate gradient algorithm.

The non-parametric measure for dependency is illustrated in Figure 6.4, where the two
density estimates required for estimating the likelihood ratio are depicted. The closer the
components are to being independent, the closer the two distributions are.

The algorithm was demonstrated to better find the correct component when used on
toy data that had dependent non-Gaussian variables. It was also shown that in a real-life
application to yeast stress measurements the the projection space found by the method
gave more information about general stress than the space found by gCCA or KernelCCA
described in [2].
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6.4 Discriminative learning

The more traditional counterpart to supervised mining is discriminative learning where
the data set is the same but the task is different. Given paired data (x, c), the task is to
predict c for a test set where only the values of x are known.

There exist two traditional modeling approaches for predicting c, discriminative and
generative. Discriminative models optimize the conditional probability p(c|x) (or some
other discriminative criterion) directly. The models are good classifiers, since they do not
waste resources on modeling those properties of the data that do not affect the value of c,
that is, the distribution of x. The alternative approach is generative modeling of the joint
distribution p(c,x). Generative models add prior knowledge of the distribution of x into
the task. This facilitates for example inferring missing values, since the model is assumed
to generate also the covariates x. The models are often additionally simpler to construct,
and their parameters offer simple explanations in terms of expected sufficient statistics.

Discriminative Joint Density Models. One way of constructing discriminative clas-
sifiers is to take a joint density model, and then change the objective function from the
joint likelihood p(c,x|θ) to the conditional likelihood p(c|x, θ). The obtained solution is
(asymptotically) optimal for discrimination [1], given the model family. Compared to pure
discriminative models, the benefit of the approach is that prior knowledge about x can
be brought in. We call such a model a discriminative joint density model. The models
operate in the same parameter space as ordinary discriminative models, but the generative
formulation constrains the model manifold within the space.

Another advantage is that even after converting a joint density model to a discrim-
inative model, the model still constructs a density estimate for x. In [1] we show that
this information may be useful, even if the model is inaccurate, for example in predicting
missing values of x.

Discriminative Expectation Maximization. Discriminative joint density models
have been put to extensive use in speech processing applications, where good results have
been obtained using discriminative hidden Markov models [2]. Current state-of-the-art
method within the field used for optimizing the models is called extended Baum Welch,
EBW [3, 2]. During the last 15 years, considerable effort has been made in order to find
the best form of update formulas, but the method is still partly heuristic and has no solid
theory explaining the update formulas. In [4] we introduce a discriminative Expectation
Maximization -type algorithm that relies on a derivation of a global lower bound for condi-
tional probability densities, alternatively to the practically too complex [5]. The derivation
suggests a practical algorithm that results from slightly relaxing the requirement of the
globality of the lower bound. The benefit of the algorithm is computational efficiency and
simpler update formulas. The resulting update formulas are very close to current extended
Baum Welch formulas, for which they give a theoretical basis that justifies the heuristics.
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6.5 Visualization methods

Visualization of mutual similarities of entries in large data sets is a central subproblem in
exploratory analysis and mining. “Looking at the data” may be an invaluable sanity check,
and often gives new insights on the data. We have introduced new nonlinear projection
methods, and measures for better quantifying the necessary tradeoffs such methods need
to make.

Continuity and trustworthiness

We have introduced methods to quantify a key question in visualization, namely the
preservation of the original similarity relationships. In general, it is impossible to preserve
all the similarities in the data set when projecting it to a lower-dimensional display. Hence,
all visualization methods make a compromise between two goals. On the one hand the
visualizations should be trustworthy, in the sense that samples that are near each other,
i.e., in the same neighborhood, in the visualization can be trusted to actually be similar.
On the other hand all the original similarities should become visualized. Some of the
original similarities might be missing from the visualization because of discontinuities in
the mapping. The tradeoff between these two goals is quite similar to the precision recall
tradeoff in information retrieval.

We compared the trustworthiness and continuity of a set of state-of-the-art methods
in a gene expression data visualization task [1, 2]. The Self-organizing map and another
nonlinear dimensionality reduction method, Curvilinear Component Analysis, were found
to be more trustworthy than other methods while visualizations produced by principal
component analysis typically have a good continuity.

Local multidimensional scaling

It would be best if the user could select the tradeoff between trustworthiness and continuity
explicitly instead of having to settle for the implicit tradeoff inherent in each method.
This idea lead us to develop a new visualization method coined local MDS [3]. It extends
a nonlinear dimensionality reduction method, curvilinear component analysis, with the
ability to tune the tradeoff.

The cost function of local MDS is

E =
1

2

∑

i

∑

j 6=i

[(1 − λ)(d(xi,xj) − d(yi,yj))
2F (d(yi,yj), σi)+

+ λ(d(xi,xj) − d(yi,yj))
2F (d(xi,xj), σi)] .

The first part of the cost function focuses on preserving distances that are within the
area of influence F (d(yi,yj), σi) around a data point i in the output space, and is the
same as the original cost function of curvilinear component analysis. The second part
focuses on preserving distances that are within the area of influence in the input space.
The weighting between these two parts, and the tradeoff between trustworthiness and
continuity, is controlled with the parameter λ. The effect of changing λ is illustrated in
Figure 6.5.
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