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5.1 Introduction

New so-called high-throughput measurement techniques have made possible genome-wide
studies of gene function. Gene expression, gene regulation, protein content, protein inter-
action, and metabolic profiles can be measured and combined with the genetic sequence.
The current challenge is to extract meaningful findings from the noisy and incomplete
data masses, collected into both community resource and private data banks. The data
needs to be analyzed, mined, understood, and taken into account in further experiments,
which makes data analysis an integral part of biomedical research. Successful genome-wide
analyses would allow a completely novel systems-level view into a biological organism.

Combining the different kinds of data produces new systems-level hypotheses about
gene function and regulation, and ultimately functioning of biological organisms. We
develop probabilistic modeling and statistical data analysis methods to advance this field.

The project is carried out in collaboration with experts of the biomedical areas and
with the other bioinformatics group of the laboratory that belongs to the From Data to
Knowledge research unit.



Bioinformatics 99

5.2 Yeast systems biology

A major component of systems biology is integration of information from multiple sources.
The integration is far from trivial since the data types and scales can vary dramatically. We
propose a new framework for systems biology that enables focusing on relevant variation in
the data sets, the relevance being determined by other, auxiliary data sets. Dependency
modeling and learning metrics methods (Section 6) provide a state of the art tool for
this. Together with Docent Christophe Roos from Medicel Ltd. we have developed and
applied them for yeast systems biology, especially for exploring yeast stress reaction and
its regulation by transcription factor proteins.

Defining yeast stress reaction

Yeast is a key model organism in biological research and process industry. The majority
of experiments and utilization of yeast take place by modifying yeast’s environmental
conditions. A problem is that this always shifts the yeast’s biological state from the
optimal to more or less stressful state that affects yeast’s behaviour. Understanding the
yeast stress is thus of crucial importance.

It is believed that yeast as a unicellular organism has a special set of genes that are
always activated under any environmental stress. Still, it is very difficult to define an
explicit, parametric model for the stress reaction. We have used a novel method to define
the stress behavior of the yeast in a data driven way: stress reaction are the effects that
are common across different stress treatments.

We have applied a version of gCCA (Section 6) in a novel way for data-driven ex-
traction of the stress effect from the multiple gene expression data sets measured under
various stress treatments [5, 6]. The use of gCCA for feature extraction produces a lower
dimensional subspace of the original joint data space of all the data sets. That subspace
maximally preserves the dependencies between the original data sets. Figure 5.1 presents
an overview of the application for gCCA to yeast stress extraction.

In [3] it was demonstrated that even better representation can be achieved by using a
non-parametric measure for the dependency in place of the correlation used in gCCA, but
with an increased computational cost.

Exploring regulation of yeast gene expression

The biological state of the cell is for a large part defined by which genes are expressed at
a certain moment. The regulation of gene expression is thus the key for understanding,
for example, the reasons why some cells are transformed to cancer cells. The regulation of
expression has been under intensive study during past five years, but it has proved to be
extremely difficult to model with detailed statistical models because of the small sample
sizes. We search for the hints which genes are dependent on regulating proteins by general
purpose methods that work in a data-driven way and utilize the latent group structure of
the genes by clustering.

Gene expression is largely regulated by a set proteins called transcription factors. They
affect gene expression by binding a gene’s promoter region, and their type and configu-
ration on the promoter determines in part the activity of the gene. We explored yeast
gene regulatory mechanisms with associative clustering (AC) (Section 6), by searching
for gene groups that are maximally dependent by expression and by transcription factor
binding (see Figure 5.2) [4]. We found statistically significant dependency, confirmed the
results with known regulatory mechanisms, and generated hypotheses for new regulatory
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interactions for many expression data sets, including the expression under environmental
stress [1, 7, 6].

Additionally, discriminative clustering (DC) (Section 6) was applied to explore the
regulation of yeast stress genes [2]. Stress genes should behave similarly in all stress
treaments, and potentially be regulated by certain regulators (MSN2/4). We clustered
yeast gene expression profiles measured in stress treatments, and supervised the clustering
by the change of the behavior after the potential regulators were knocked out. This focused
the clusters on gene expression regulated by MSN2/4.

We identified a subset of genes that are upregulated in all stress conditions, but only
when regulators MSN2 and MSN4 are functional. Stress genes found in an independent
study were strongly enriched in the discovered subset.
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Figure 5.1: Dimensionality reduction by gCCA extracts common properties of data sets.
On the left are the original expression data sets from various stress treatments. Red
denotes the genes upregulated during stress and, respectively, green the genes that are
downregulated. Applying gCCA to the concatenated data sets in a novel way finds a
linear subspace that maximally preserves the dependencies between the original variables
(in the middle). In the rightmost figure, when the data is projected on the two first
components, the known stress genes (red and green dots) become separated from the rest
(black dots).
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Figure 5.2: Example of a significant association between transcription factor binding and
gene expression patterns identified by AC. The yellow cross cluster is associated with cell
cycle, and reveals both known and novel dependencies between gene expression and TF
binding. The upper profile shows the average expression profile (bars) of the cluster, and
the confidence intervals (curves). The lower figure show the average TF-binding profile of
the clusters with confidence intervals. In this cluster there were two reliable TF bindings
(the rightmost bars in the lower figure), SIP4 and SFL1, of which SIP4 could be verified
from the literature, and SFL1 is a new potential regulator for the genes in this cluster.
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5.3 Comparative functional genomics

Comparative genomics studies the similarity of the genes in different species. This is
of utmost importance when animal models are used to study human diseases and the
inferences based on an animal models are translated to human. The basis of this translation
are usually the orthologous genes.

Determination of orthologous genes, between organisms, relies on similarities in their
DNA sequence. However, this does not guarantee their functional similarity. We explored
the functional dependencies between human and mouse orthologous gene expression by
clustering them with associative clustering [1, 2]. In collaboration with the group of Eero
Castrén from Neuroscience Center, University of Helsinki, we confirmed the expected func-
tional similarity for many orthologous genes, but we also found some unexpected differ-
ences. These differences suggest deviations of genes’ functions during evolution and show
evidence in favour of using both functional and sequence information when determining
homologous genes.
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Figure 5.3: Sample visualization of the gene expression atlas by curvilinear component
analysis. Each dot denotes one microarray; the colors show the measurement platform.

5.4 Gene expression atlas

A large community-resource or private gene expression databank consists of numerous data
sets submitted by several parties. They may have been measured for different purposes,
with different treatments and methods in different laboratories. Several such databanks
have been established and they continue to grow. A key challenge is how to best use
the databanks to support further research. Currently information in these databanks
is accessed using queries on the imperfect meta-data, that is, textual annotations and
descriptions. In the future more sophisticated search methods, that take the actual data
into account, are needed. Our first study [1] aims at creating a visual interface that reveals
similarities of data sets.

We compared several different visualization methods in the task of visualizing a large
collection of gene expression arrays. A nonlinear dimensionality reduction algorithm,
curvilinear component analysis, had the best performance of the methods compared. We
also verified that the main sources of variance in the data were also evident from the
visualization. In this case the data turned out to be mostly organized based on the type
of platform used to perform the experiment. Thus the simple preprocessing method used
was not able to make the data commensurable. This is also very evident in Fig. 5.3;
the experiments done on each platform create coherent groups and there is only a small
amount of mixing of arrays from different platforms. Thus, we were able to produce a
visualization organized according to the main sources of variation in the data, and when
better preprocessing methods are developed, it will be possible to produce a useful visual
interface to a gene expression data bank.
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5.5 Genomics of human endogenous retroviruses

About eight per cent of human DNA consists of remains of specific kinds of transposons1,
called human endogenous retroviruses (HERV). Human retroviruses, such as HIV, in gen-
eral are viruses capable of copying their genetic code to the DNA of humans, and they
become endogenous once they have been copied to the germ-line. Human endogenous
retroviruses are remains from ancient infections.

Human endogenous retroviruses, in contrast to some other human transposons, are not
capable of moving any longer but it has been suggested that they may have functions in
regulating the activity of human genes, and may produce proteins under some conditions
[1].

One of the first steps in understanding HERV function is to classify HERVs into fam-
ilies. We have studied the relationships of existing HERV families and tried to detect
potentially new HERV families in co-operation with the group of Professor Blomberg,
University of Uppsala, [3, 4]. A Median Self-Organizing Map (SOM) [2], a SOM for
non-vectorial data, was used to group and visualize a collection of 3661 HERV protein
sequences.

The SOM-based analysis was complemented with estimates of the reliability of the
results [4]. A novel trustworthiness visualization method was used to estimate which parts
of the SOM visualization are reliable and which not. The reliability of extracted interesting
HERV groups was verified by a bootstrap procedure suitable for SOM visualization-based
analysis. The SOM detected a completely new group of epsilonretroviral sequences and
was able to shed light into the relationships of three pre-existing HERV families. The
SOM detected a group of ERV9, HERVW, and HUERSP3 sequences which suggested
that ERV9 and HERVW sequences may have a common origin.
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[4] Merja Oja, Göran O. Sperber, Jonas Blomberg, and Samuel Kaski. Self-organizing
map-based discovery and visualization of human endogenous retroviral sequence
groups. International Journal of Neural Systems, 15(3):163–179, 2005.

1parts of genome capable of moving or copying themselves in the genome


