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4.1 Bayesian modeling and variational learning: introduc-

tion

Unsupervised learning methods are often based on a generative approach where the goal
is to find a model which explains how the observations were generated. It is assumed that
there exist certain source signals (also called factors, latent or hidden variables, or hidden
causes) which have generated the observed data through an unknown mapping. The goal
of generative learning is to identify both the source signals and the unknown generative
mapping.

The success of a specific model depends on how well it captures the structure of the
phenomena underlying the observations. Various linear models have been popular, because
their mathematical treatment is fairly easy. However, in many realistic cases the observa-
tions have been generated by a nonlinear process. Unsupervised learning of a nonlinear
model is a challenging task, because it is typically computationally much more demanding
than for linear models, and flexible models require strong regularization.

In Bayesian data analysis and estimation methods, all the uncertain quantities are
modeled in terms of their joint probability distribution. The key principle is to construct
the joint posterior distribution for all the unknown quantities in a model, given the data
sample. This posterior distribution contains all the relevant information on the parameters
to be estimated in parametric models, or the predictions in non-parametric prediction or
classification tasks [1].

Denote by H the particular model under consideration, and by θ the set of model
parameters that we wish to infer from a given data set X. The posterior probability
density p(θ|X,H) of the parameters given the data X and the model H can be computed
from the Bayes’ rule

p(θ|X,H) =
p(X|θ,H)p(θ|H)

p(X|H)
(4.1)

Here p(X|θ,H) is the likelihood of the parameters θ, p(θ|H) is the prior pdf of the pa-
rameters, and p(X|H) is a normalizing constant. The term H denotes all the assumptions
made in defining the model, such as choice of a multilayer perceptron (MLP) network,
specific noise model, etc.

The parameters θ of a particular model Hi are often estimated by seeking the peak
value of a probability distribution. The non-Bayesian maximum likelihood (ML) method
uses to this end the distribution p(X|θ,H) of the data, and the Bayesian maximum a pos-
teriori (MAP) method finds the parameter values that maximize the posterior probability
density p(θ|X,H). However, using point estimates provided by the ML or MAP methods
is often problematic, because the model order estimation and overfitting (choosing too
complicated a model for the given data) are severe problems [1].

Instead of searching for some point estimates, the correct Bayesian procedure is to
use all possible models to evaluate predictions and weight them by the respective pos-
terior probabilities of the models. This means that the predictions will be sensitive to
regions where the probability mass is large instead of being sensitive to high values of the
probability density [2]. This procedure optimally solves the issues related to the model
complexity and choice of a specific model Hi among several candidates. In practice, how-
ever, the differences between the probabilities of candidate model structures are often very
large, and hence it is sufficient to select the most probable model and use the estimates
or predictions given by it.

A problem with fully Bayesian estimation is that the posterior distribution (4.1) has a
highly complicated form except for in the simplest problems. Therefore it is too difficult
to handle exactly, and some approximative method must be used. Variational methods
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form a class of approximations where the exact posterior is approximated with a simpler
distribution [3]. In a method commonly known as Variational Bayes (VB) [1, 2] the misfit
of the approximation is measured by the Kullback-Leibler (KL) divergence between two
probability distributions q(v) and p(v). The KL divergence is defined by

D(q ‖ p) =

∫

q(v) ln
q(v)

p(v)
dv (4.2)

which measures the difference in the probability mass between the densities q(v) and p(v).
A key idea in the VB method is to minimize the misfit between the actual posterior pdf

and its parametric approximation using the KL divergence. The approximating density is
often taken a diagonal multivariate Gaussian density, because the computations become
then tractable. Even this crude approximation is adequate for finding the region where
the mass of the actual posterior density is concentrated. The mean values of the Gaussian
approximation provide reasonably good point estimates of the unknown parameters, and
the respective variances measure the reliability of these estimates.

A main motivation of using VB is that it avoids overfitting which would be a difficult
problem if ML or MAP estimates were used. VB method allows one to select a model hav-
ing appropriate complexity, making often possible to infer the correct number of sources or
latent variables. It has provided good estimation results in the very difficult unsupervised
(blind) learning problems that we have considered.

Variational Bayes is closely related to information theoretic approaches which mini-
mize the description length of the data, because the description length is defined to be the
negative logarithm of the probability. Minimal description length thus means maximal
probability. In the probabilistic framework, we try to find the sources or factors and the
nonlinear mapping which most probably correspond to the observed data. In the informa-
tion theoretic framework, this corresponds to finding the sources and the mapping that
can generate the observed data and have the minimum total complexity. The information
theoretic view also provides insights to many aspects of learning and helps explain several
common problems [4].

In the following subsections, we first present some recent theoretical improvements to
VB methods and a practical building block framework that can be used to easily construct
new models. After this we discuss practical models for nonlinear and non-negative blind
source separation as well as multivariate time series analysis using nonlinear state-space
models. A more structured extension of probabilistic relational models is also presented.
Finally we present applications of the developed Bayesian methods to astronomical data
analysis problems.
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4.2 Theoretical improvements

Effect of posterior approximation

Most applications of variational Bayesian learning to ICA models reported in the literature
assume a fully factorized posterior approximation q(v), because this usually results in a
computationally efficient learning algorithm. However, the simplicity of the posterior
approximation does not allow for representing all possible solutions, which may greatly
affect the found solution.

Our paper [5] shows that neglecting the posterior correlations of the sources S in the
approximating density q(S) introduces a bias in favor of the principal component analysis
(PCA) solution. By the PCA solution we mean the solution which has an orthogonal
mixing matrix. Nevertheless, if the true mixing matrix is close to orthogonal and the
source model is strongly in favor of the desirable ICA solution, the optimal solution can be
expected to be close to the ICA solution. In [5], we studied this problem both theoretically
and experimentally by considering linear ICA models with either independent dynamics or
non-Gaussian source models. The analysis also extends to the case of nonlinear mixtures.

Figure 4.1 presents experimental results illustrating the general trade-off of variational
Bayesian learning between the misfit of the posterior approximation and the accuracy of
the model. According to our assumption, the sources can be accurately modeled in the
ICA solution and therefore the cost of inaccurate assumption would increase towards the
ICA solution. As a result, the ICA solution is found for strongly non-Gaussian sources
(ν = 1). On the other hand, if the true mixing matrix is not orthogonal, the optimal
posterior covariance of the sources could have posterior correlations between the sources.
Then, the misfit of the posterior approximation of the sources is minimized in the PCA
solution where the true posterior covariance would be diagonal. This is the reason why the
PCA solution is found for the sources whose distribution is close to Gaussian (ν = 0.6). In
the intermediate cases (ν = 0.7, ν = 0.9), some compromise solutions, which lie in between
the PCA and ICA solutions, can be found.

Accurate linearisation for learning nonlinear models

Learning of nonlinear models in the variational Bayesian framework fundamentally reduces
to evaluating statistics of the data predicted by the model as a function of the parameters of
the variational approximation of the posterior distribution. This is equivalent to evaluating
statistics of a nonlinear transformation of the approximating probability distribution. A
common approach that was also used in our earlier work on nonlinear models [6, 7] is
to use a Taylor series approximation to linearise the nonlinearity. Unfortunately this
approximation breaks down when the variance of the approximating distribution increases,
and this leads to algorithmic instability.

For handling this problem, a new linearisation method based on replacing the local
approach of the Taylor scheme with a more global approximation was proposed in [8, 9].
In case of multilayer perceptron (MLP) networks this can be done efficiently by replacing
the nonlinear activation function of the hidden neurons by a linear function that would
provide the same output mean and variance, as evaluated by Gauss–Hermite quadrature.
The resulting approximation yields significantly more accurate estimates of the cost of the
model while being computationally almost as efficient. This is illustrated in Figure 4.2.
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ν = 0.6 ν = 0.7

ν = 0.9 ν = 1

PCA
ICA

Figure 4.1: Separation results obtained with a model with super-Gaussian sources and
fully factorial approximation for four test ICA problems. The parameter ν is the measure
of the non-Gaussianity of the sources used in the test data. The dotted lines represent the
columns of the mixing matrix during learning, the final solution is circled. The PCA and
ICA directions are shown on the plots with the dashed and dashed-dotted lines respectively.
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Figure 4.2: The attained values of the cost in different simulations as evaluated by the
different approximations plotted against reference values evaluated by sampling. The left
subfigure shows the values from experiments using the proposed approximation and the
right subfigure from experiments using the Taylor approximation.
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Partially observed values

It is well known that Bayesian methods provide well-founded and straightforward means for
handling missing values in data. The same applies to values that are somewhere between
observed and missing. So-called coarse data means that we only know that a data point
belongs to a certain subset of all possibilities. So-called soft or fuzzy data generalises
this further by giving weights to the possibilities. In [10], different ways of handling soft
data are studied in context of variational Bayesian learning. A simple example is given in
Figure 4.3. The approach called virtual evidence is recommended based on both theory
and experimentation with real image data. Also, a justification is given for the standard
preprocessing step of adding a tiny amount of noise to the data, when a continuous-valued
model is used for discrete-valued data.

x

y y y

x x

Figure 4.3: Some x-values of the data are observed only partially. They are marked with
dotted lines representing their confidence intervals. Left: A simple data set for a factor
analysis problem. Middle: In the compared approach, the model needs to adjust to cover
the distributions. Right: In the proposed approach, the partially observed values are
reconstructed based on the model.
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4.3 Building blocks for variational Bayesian learning

In graphical models, there are lots of possibilities to build the model structure that defines
the dependencies between the parameters and the data. To be able to manage the vari-
ety, we have designed a modular software package using C++/Python called the Bayes
Blocks [11]. The theoretical background on which it is based on, was published in [12].

The design principles for Bayes Blocks have been the following. Firstly, we use stan-
dardized building blocks that can be connected rather freely and can be learned with local
learning rules, i.e. each block only needs to communicate with its neighbors. Secondly,
the system should work with very large scale models. We have made the computational
complexity linear with respect to the number of data samples and connections in the
model.

The building blocks include Gaussian variables, summation, multiplication, and non-
linearity. Recently, several new blocks were implemented including mixture-of-Gaussians
and rectified Gaussians [13]. Each of the blocks can be a scalar or a vector. Variational
Bayesian learning provides a cost function which can be used for updating the variables as
well as optimizing the model structure. The derivation of the cost function and learning
rules is automatic which means that the user only needs to define the connections between
the blocks.

Examples of structures which can be build using the Bayes Blocks library can be found
in Figure 4.4 in the following subsection as well as [12, 14].

Hierarchical modeling of variances

In many models, variances are assumed to have constant values although this assumption
is often unrealistic in practice. Joint modeling of means and variances is difficult in many
learning approaches, because it can give rise to infinite probability densities. In Bayesian
methods where sampling is employed, the difficulties with infinite probability densities are
avoided, but these methods are not efficient enough for very large models. Our variational
Bayesian method [14], which is based on the building blocks framework, is able to jointly
model both variances and means efficiently.

The basic building block in our models is the variance node, which is a time-dependent
Gaussian variable u(t) controlling the variance of another time-dependent Gaussian vari-
able ξ(t)

ξ(t) ∼ N
(

µξ(t), exp[−u(t)]
)

Here N (µ, σ2) is the Gaussian distribution with mean µ and variance σ2, and µξ(t) is the
mean of ξ(t) given by other parts of the model.

Figure 4.4 shows three examples of usage of variance nodes. The first model does not
have any upper layer model for the variances. There the variance nodes are useful as
such for generating super-Gaussian distributions for s, enabling us to find independent
components. In the second model the sources can model concurrent changes in both the
observations x and the modeling error of the observations through variance nodes ux.
The third model is a hierarchical extension of the linear ICA model. The correlations
and concurrent changes in the variances us(t) of conventional sources s(t) are modeled by
higher-order variance sources r(t).

We have used the model of Fig. 4.4(c) for finding variance sources from biomedical data
containing MEG measurements from a human brain [14]. The signals are contaminated by
external artefacts such as digital watch, heart beat, as well as eye movements and blinks.
The most prominent feature in the area we used from the dataset is the biting artefact.
There the muscle activity contaminates many of the channels starting after 1600 samples.
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Figure 4.4: Various model structures utilizing variance nodes. Observations are denoted
by x, linear mappings by A and B, sources by s and r, and variance nodes by u.

Some of the estimated ordinary sources s(t) are shown in Figure 4.5(a). The variance
sources r(t) that were discovered are shown in Figure 4.5(b). The first variance source
clearly models the biting artefact. This variance source integrates information from several
conventional sources, and its activity varies very little over time. The second variance
source appears to represent increased activity during the onset of the biting, and the third
variance source seems to be related to the amount of rhythmic activity on the sources.

(a) (b)

Figure 4.5: (a) Sources s(t) (nine out of 50) estimated from the data. (d) Variance sources
r(t) which model the regularities found from the variances of the sources [14].
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4.4 Nonlinear and non-negative blind source separation

Linear factor analysis (FA) [15] models the data so that it has been generated by sources
through a linear mapping with additive noise. Under low noise the method reduces to
principal component analysis (PCA). These methods are insensitive to orthogonal rota-
tions of the sources as they only use second order statistics. This can be resolved in the
low noise case by independent component analysis (ICA) by assuming independence of
the sources and using higher order information [15]. Non-negativity constraints provide
an alternative method of resolving the rotation indeterminacy. These methods can be
used for blind source separation (BSS) of the sources.

We have applied variational Bayesian learning to nonlinear FA and BSS where the
generative mapping from sources to data is not restricted to be linear. The general form
of the model is

x(t) = f(s(t),θf ) + n(t) . (4.3)

This can be viewed as a model about how the observations were generated from the sources.
The vectors x(t) are observations at time t, s(t) are the sources, and n(t) the noise. The
function f(·) is a mapping from source space to observation space parametrized by θf .

BSS and FA in problems with nonlinear mixing

In an earlier work [6] we have used multi-layer perceptron (MLP) network with tanh-
nonlinearities to model the mapping f :

f(s;A,B,a,b) = B tanh(As + a) + b . (4.4)

The mapping f is thus parameterized by the matrices A and B and bias vectors a and
b. MLP networks are well suited for nonlinear FA and BSS. First, they are universal
function approximators which means that any type of nonlinearity can be modeled by
them in principle. Second, it is easy to model smooth, nearly linear mappings with them.
This makes it possible to learn high dimensional nonlinear representations in practice.

The more accurate linearisation presented in Section 4.2 increases stability of the
algorithm in cases with a large number of sources when the posterior variances of the last
weak sources are typically large.

Using the MLP network in nonlinear BSS leads to an optimisation problem with many
local minima. This makes the method sensitive to initialisation. Originally we have used
linear PCA to initialise the posterior means of the sources. This can lead to suboptimal
results if the mixing is strongly nonlinear. In [16] nonlinear kernel PCA has been used for
initialisation. With a proper choice of the kernel, this can lead to significant improvement
in separation results.

An alternative hierarchical nonlinear factor analysis (HNFA) model for nonlinear BSS
using the building blocks presented in Section 4.3 was introduced in [17]. HNFA is appli-
cable to larger problems than the MLP based method, as the computational complexity
is linear with respect to the number of sources. The efficient pruning facilities of Bayes
Blocks also allow determining whether the nonlinearity is really needed and pruning it out
when the mixing is linear, as demonstrated in [18].

Post-nonlinear FA and BSS

Our work [20] restricts the general nonlinear mapping in (4.3) to the important case of
post-nonlinear (PNL) mixtures. The PNL model consists of a linear mixture followed by
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component-wise nonlinearities acting on each output independently from the others:

xi(t) = fi

[

aT
i s(t)

]

+ ni(t) i = 1, . . . , n (4.5)

The vector ai in this equation denotes the i:th row of the mixing matrix A. The sources
s(t) are assumed to have Gaussian distributions in our model called post-nonlinear fac-
tor analysis (PNFA). The sources found with PNFA can be further rotated using any
algorithm for linear ICA in order to obtain independent sources.

The development of PNFA was motivated by the comparison experiments [19] where we
showed that the existing PNL methods cannot separate globally invertible post-nonlinear
mixtures with non-invertible post-nonlinearities. The proposed technique learns the gen-
erative model of the observations and therefore it is applicable to such complex PNL
mixtures. In [20], we show that PNFA can achive separation of signals in a very challeng-
ing BSS problem.

Non-negative BSS by rectified factor analysis

Linear factor models with non-negativity constraints have received a great deal of interest
in a number of problem domains. In the variational Bayesian framework, positivity of
the factors can be achieved by putting a non-negatively supported prior on the factors.
The rectified Gaussian distribution is particularly convenient, as it is conjugate to the
Gaussian likelihood arising in the FA model. Unfortunately, this solution has a serious
technical limitation: it includes in practice the assumption that the factors have sparse
distributions, meaning that the probability mass is concentrated near zero. This is because
the location parameter of the prior has to be fixed to zero; otherwise the potentials arising
both to the location and to the scale parameter become very awkward.

A way to circumvent the above mentioned problems is to reformulate the model using
rectification nonlinearities. This can be expressed in the formalism of Eq. (4.3) using the
following nonlinearity

f(s; A) = Acut(s) (4.6)

where cut is the componentwise rectification (or cut) function such that [cut(s)]i =
max(si, 0). In [21], a variational learning procedure was derived for the proposed model
and it was shown that it indeed overcomes the problems that exist with the related ap-
proaches. In Section 4.7 an application of the method to the analysis of galaxy spectra is
presented.
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4.5 Dynamic modelling using nonlinear state-space models

Nonlinear state-space models

In many cases, measurements originate from a dynamical system and form time series.
In such cases, it is often useful to model the dynamics in addition to the instantaneous
observations. We have extended the nonlinear factor analysis model by adding a nonlinear
model for the dynamics of the sources s(t) [7]. This results in a state-space model where
the sources can be interpreted as the internal state of the underlying generative process.

The nonlinear static model of Eq. (4.3) can easily be extended to a dynamic one by
adding another nonlinear mapping to model the dynamics. This leads to source model

s(t) = g(s(t − 1),θg) + m(t) , (4.7)

where s(t) are the sources (states), m is the Gaussian noise, and g(·) is a vector containing
as its elements the nonlinear functions modelling the dynamics.

As in nonlinear factor analysis, the nonlinear functions are modelled by MLP networks.
The mapping f has the same functional form (4.4). Since the states in dynamical systems
are often slowly changing, the MLP network for mapping g models the change in the value
of the source:

g(s(t − 1)) = s(t − 1) + D tanh[Cs(t − 1) + c] + d . (4.8)

An important advantage of the proposed method is its ability to learn a high-
dimensional latent source space. We have also reasonably solved computational and over-
fitting problems which have been major obstacles in developing this kind of unsupervised
methods thus far. Potential applications for our method include prediction and process
monitoring, control and identification.

Detection of process state changes

One potential application for the nonlinear state-space model is process monitoring.
In [22], variational Bayesian learning was shown to be able to learn a model which is
capable of detecting an abrupt change in the underlying dynamics of a fairly complex
nonlinear process. The process was artificially generated by nonlinearly mixing some of
the states of three independent dynamical systems: two independent Lorenz processes and
one harmonic oscillator. The nonlinear dynamic model was first estimated off-line using
1000 samples of the observed process. The model was then fixed and applied on-line to
new observations with artificially generated changes of the dynamics.

Figures 4.6 and 4.7 show an experiment with a change generated at time instant Tch,
when the underlying dynamics of one of the Lorenz processes abruptly changes. The
change detection method based on the estimated model readily detects the change raising
an alarm after the time of change. The method is also able to find out in which states the
change occurred (see Fig. 4.7) as the reason for the detected change can be localised by
analysing the structure of the cost function.

Stochastic nonlinear model-predictive control

For being able to control the dynamical system, control inputs are added to the nonlinear
state-space model. In [23], we study three different control schemes in this setting. Direct
control is based on using the internal forward model directly. It is fast to use, but requires
the learning of a policy mapping, which is hard to do well. Optimistic inference control is
a novel method based on Bayesian inference answering the question: “Assuming success
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detection
signal

Tch

Figure 4.6: The monitored process (10 time series above) with the change simulated at
Tch. The change has been detected using the estimated model, the alarm signal is shown
below.

Figure 4.7: The estimated process states reconstructing the two original Lorenz processes
and harmonic oscillator. The values after Tch are shown as coloured curves. The cost
contribution of the second process drastically changes after the time of change, which is
used to localise the reason of the change.

in the end, what will happen in near future?” It is based on a single probabilistic inference
but unfortunately neither of the two tested inference algorithms works well with it. The
third control scheme is stochastic nonlinear model-predictive control, which is based on
optimising control signals based on maximising a utility function.

Figure 4.8 shows simulations with a cart-pole swing-up task. The results confirm that
selecting actions based on a state-space model instead of the observation directly has many
benefits: First, it is more resistant to noise because it implicitly involves filtering. Second,
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F

y

p

Figure 4.8: Left: the cart-pole system. The goal is to swing the pole to an upward position
and stabilise it without hitting the walls. The cart can be controlled by applying a force
to it. Top left: the pole is successfully swinged up by moving first to the left and then
right. Bottom right: our controller works quite reliably even in the presence of serious
observation noise [23].

the observations (without history) do not always carry enough information about the sys-
tem state. Third, when nonlinear dynamics are modelled by a function approximator such
as an multilayer perceptron network, a state-space model can find such a representation
of the state that it is more suitable for the approximation and thus more predictable [23].
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4.6 Relational models

Formerly, we have divided our models into two categories: static and dynamic. In static
modelling, each observation or data sample is independent of the others. In dynamic mod-
els, the dependencies between consecutive observations are modelled. The generalisation
of both is that the relations are described in the data itself, that is, each observation might
have a different structure.

Many models have been developed for relational discrete data, and for data with non-
linear dependencies between continuous values. In [24], we combine two of these methods,
relational Markov networks and hierarchical nonlinear factor analysis, resulting in using
nonlinear models in a structure determined by the relations in the data. Experimental
setup in the board game Go is depicted in Figure 4.9. The task is the collective regression
of survival probabilities of blocks. The results suggest that regression accuracy can be
improved by taking into account both relations and nonlinearities.

Figure 4.9: The leftmost subfigure shows the board of a Go game in progress. In the
middle, the expected owner of each point is visualised with the shade of grey. For instance,
the two white stones in the upper right corner are very likely to be captured. The rightmost
subfigure shows the blocks with their expected owner as the colour of the square. Pairs of
related blocks are connected with a line which is dashed when the blocks are of opposing
colours.

Many real world sequences such as protein secondary structures or shell logs exhibit
rich internal structures. Logical hidden Markov models have been proposed as one solu-
tion. They deal with logical sequences, i.e., sequences over an alphabet of logical atoms.
This comes at the expense of a more complex model selection problem. Indeed, different
abstraction levels have to be explored. In [25], we propose a novel method for selecting
logical hidden Markov models from data called sagEM. sagEM combines generalized
expectation maximization, which optimizes parameters, with structure search for model
selection using inductive logic programming refinement operators. We provide convergence
and experimental results that show sagEM’s effectiveness.
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4.7 Applications to astronomy

We have applied rectified factor analysis [21] described in Section 4.4 to the analysis of real
stellar population spectra of elliptical galaxies. Ellipticals are the oldest galactic systems
in the local universe and are well studied in physics. The hypothesis that some of these
old galactic systems may actually contain young components is relatively new. Hence,
we have investigated whether a set of stellar population spectra can be decomposed and
explained in terms of a small set of unobserved spectral prototypes in a data driven but
yet physically meaningful manner. The positivity constraint is important in this modelling
application, as negative values of flux would not be physically interpretable.

Figure 4.10: Left: the spectrum of a galaxy with its decomposition to a young and old com-
ponent. Right: the age of the dominating stellar population against the mixing coefficient
of the young component.

Using a set of 21 real stellar population spectra, we found that they can indeed be
decomposed to prototypical spectra, especially to a young and old component [26]. Fig-
ure 4.10 shows one spectrum and its decomposition to these two components. The right
subfigure shows the ages of the galaxies, known from a detailed astrophysical analysis,
plotted against the first weight of the mixing matrix. The plot clearly shows that the first
component corresponds to a galaxy containing a significant young stellar population.
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