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2.1 Introduction

What is Independent Component Analysis and Blind Source Separation? In-
dependent Component Analysis (ICA) is a computational technique for revealing hidden
factors that underlie sets of measurements or signals. ICA assumes a statistical model
whereby the observed multivariate data, typically given as a large database of samples,
are assumed to be linear or nonlinear mixtures of some unknown latent variables. The
mixing coefficients are also unknown. The latent variables are nongaussian and mutually
independent, and they are called the independent components of the observed data. By
ICA, these independent components, also called sources or factors, can be found. Thus
ICA can be seen as an extension to Principal Component Analysis and Factor Analy-
sis. ICA is a much richer technique, however, capable of finding the sources when these
classical methods fail completely.

In many cases, the measurements are given as a set of parallel signals or time series.
Typical examples are mixtures of simultaneous sounds or human voices that have been
picked up by several microphones, brain signal measurements from multiple EEG sensors,
several radio signals arriving at a portable phone, or multiple parallel time series obtained
from some industrial process. The term blind source separation is used to characterize
this problem. Also other criteria than independence can be used for finding the sources.

Our contributions in ICA research. In our ICA research group, the research
stems from some early work on on-line PCA, nonlinear PCA, and separation, that we were
involved with in the 80’s and early 90’s. Since mid-90’s, our ICA group grew considerably.
This earlier work has been reported in the previous Triennial and Biennial reports of our
laboratory from 1994 to 2003. A notable achievement from that period was the textbook
“Independent Component Analysis” (Wiley, May 2001) by A. Hyvärinen, J. Karhunen,
and E. Oja. It has been very well received in the research community; according to the
latest publisher’s report, over 3900 copies have been sold by August, 2005. The book has
been extensively cited in the ICA literature and seems to have evolved into the standard
text on the subject worldwide. In 2005, the Japanese translation of the book appeared.

Another tangible contribution has been the public domain FastICA software package
(http://www.cis.hut.fi/projects/ica/fastica/). This is one of the few most pop-
ular ICA algorithms used by the practitioners and a standard benchmark in algorithmic
comparisons in ICA literature.

In the reporting period 2004 - 2005, ICA/BSS research stayed as a core project in the
laboratory. It was extended to several new directions. This Chapter starts by introducing
some theoretical advances on FastICA undertaken during the reporting period. Then,
several extensions and applications of ICA and BSS are covered, namely nonlinear ICA
and BSS, the Denoising Source Separation (DSS) algorithm, its applications to climate
data analysis and telecommunications signals, ICA for image representations, and a latent
variable method for analyzing binary data.
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2.2 Finite sample behaviour of the FastICA algorithm

In ICA, a set of original source signals are retrieved from their mixtures based on the
assumption of their mutual statistical independence. The simplest case for ICA is the
instantaneous linear noiseless mixing model. In this case, the mixing process can be
expressed as

X = AS, (2.1)

where X is an d ×N data matrix. Its rows are the observed mixed signals, thus d is the
number of mixed signals and N is their length or the number of samples in each signal.
Similarly, the unknown d×N matrix S includes samples of the original source signals. A

is an unknown regular d × d mixing matrix. It is assumed square because the number of
mixtures and sources can always be made equal in this simple model.

In spite of the success of ICA in solving even large-scale real world problems, some
theoretical questions remain partly open. One of the most central questions is the theo-
retical accuracy of the developed algorithms. Mostly the methods are compared through
empirical studies, which may demonstrate the efficacy in various situations. However, the
general validity cannot be proven like this. A natural question is, whether there exists
some theoretical limit for separation performance, and whether it is possible to reach it.

Many of the algorithms can be shown to converge in theory to the correct solution
giving the original sources, under the assumption that the sample size N is infinite. This
is unrealistic. For finite data sets, what typically happens is that the sources are not
completely unmixed but some traces of the other sources remain in them even after the
algorithm has converged. This means that the obtained demixing matrix Ŵ is not ex-
actly the inverse of A, and the matrix of estimated sources Y = ŴX = ŴAS is only
approximately equal to S. A natural measure of error is the deviation of the so-called gain
matrix G = ŴA from the identity matrix, i.e., the variances of its elements.

The well-known lower limit for the variance of a parameter vector in estimation theory
is the Cramér-Rao lower bound (CRB). In publications [1, 2], the CRB for the demixing
matrix of the FastICA algorithm was derived. The result depends on the score functions
of the sources,

ψk(s) = −

d

ds
logpk(s) = −

p′k(s)

pk(s)
(2.2)

where pk(s) is the probability density function of the k-th source. Let

κk = E
[
ψ2

k(sk)
]
. (2.3)

Then, assuming that the correct score function is used as the nonlinearity in the
FastICA algorithm, the asymptotic variances of the off-diagonal elements (k, ℓ) of matrix
G for the one-unit and symmetrical FastICA algorithm, respectively, read
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while the CRB reads

CRB(Gkℓ) =
1

N

κk

κkκℓ − 1
. (2.6)

Comparison of these results implies that the algorithm FastICA is nearly statistically
efficient in two situations:
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(1) One-unit version FastICA with the optimum nonlinearity is asymptotically efficient
for κk → ∞, regardless of the value of κℓ.

(2) Symmetric FastICA is nearly efficient for κi lying in a neighborhood of 1+, provided
that all independent components have the same probability distribution function, and the
nonlinearity is equal to the joint score function.

The work was continued to find a version of the FastICA that would be asymptotically
efficient, i.e. with some choice of nonlinearities would be able to attain the CRB. This
work [3] will be reported later.
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2.3 Nonlinear ICA and BSS

Juha Karhunen, Antti Honkela, Alexander Ilin

Recent advances in blind source separation (BSS) and independent component analy-
sis (ICA) for nonlinear mixing models have been reviewed in the invited journal paper
[1]. After a general introduction to BSS and ICA, uniqueness and separability issues are
discussed in more detail, presenting some new results. A fundamental difficulty in the non-
linear BSS problem and even more so in the nonlinear ICA problem is that they provide
non-unique solutions without extra constraints, which are often implemented by using a
suitable regularization. In the paper [1], two possible approaches are explored in more de-
tail. The first one is based on structural constraints. Especially, post-nonlinear mixtures
are an important special case, where a nonlinearity is applied to linear mixtures. For such
mixtures, the ambiguities are essentially the same as for the linear ICA or BSS problems.
The second approach uses Bayesian inference methods for estimating the best statistical
parameters, under almost unconstrained models in which priors can be easily added. In
the later part of the paper [1], various separation techniques proposed for post-nonlinear
mixtures and general nonlinear mixtures are reviewed.

Our own research on nonlinear BSS has concentrated on the Bayesian approach which
is described in Sec. 4.4. The latest results include the use of kernel PCA to initialize the
model for improved accuracy in highly nonlinear problems as well as a variational Bayesian
generative model for post-nonlinear ICA.

There exist few comparisons of nonlinear ICA and BSS methods, and their limitations
and preferable application domains have been studied only a little. We have experimentally
compared two approaches introduced for nonlinear BSS: the Bayesian methods developed
at the Neural Network Research Centre (NNRC) of Helsinki University of Technology,
and the BSS methods introduced for the special case of post-nonlinear (PNL) mixtures
developed at Institut National Polytechnique de Grenoble (INPG) in France. This com-
parison study took place within the framework of the European joint project BLISS on
blind source separation and its applications.

The Bayesian method developed at NNRC for recovering independent sources consists
of two phases: Applying the general nonlinear factor analysis (NFA) [3] to obtain Gaus-
sian sources; and their further rotation with a linear ICA technique such as the FastICA
algorithm [2]. The compared BSS method, developed at INPG for post-nonlinear mix-
tures, is based on minimization of the mutual information between the sources. It uses a
separating structure consisting of nonlinear and linear stages [4].

Both approaches were applied to the same ICA problems with artificially generated
post-nonlinear mixtures of two independent sources. Based on the experimental results,
the following conclusions were drawn on the applicability of the INPG and Bayesian
NFA+FastICA approaches to post-nonlinear blind source separation problems:

1. The INPG method performs better in classical post-nonlinear mixtures with the
same number of sources and observations when all post-nonlinear distortions are
invertible.

2. The performance of both methods can be improved by exploiting more mixtures
than the number of sources especially in the case of noisy mixtures.

3. The advantage of the Bayesian methods in post-nonlinear BSS problems is that
they can separate post-nonlinear mixtures with non-invertible post-nonlinearities
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provided that the full mapping is globally invertible. The existing INPG methods
cannot do this due to their constrained separation structure.

The results of this comparison study were presented in [5].
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2.4 Denoising source separation

Jaakko Särelä

Denoising source separation (DSS,[1]) is a recently developed framework for linear source
separation and feature extraction. In DSS, the algorithms are constructed around denois-
ing operations. With certain types of denoising, DSS realises ICA.

With linear denoising, the algorithm consists of three steps: 1) sphering (whitening) 2)
denoising 3) PCA. If the denoising is nonlinear, an iterative procedure has to be used, and
the algorithm resembles nonlinear PCA and has the following iteration after presphering:
1) estimation of the sources using the current mapping, 2) denoising of the source esti-
mates, 3) re-estimation of the mapping. The crucial part is the denoising, and available
prior or acquired information may be implicitly implemented in it.

As an example, consider the two observations in Fig. 2.1. The correlation structure
between the observations becomes apparent, when they are plotted against each others
in a scatter-plot. The red curve illustrates the variance of different projections and the
red line the direction where the variance is maximised. As it happens, the observations
are linear mixtures of two independent sources. The mixing vectors are shown in the
scatter-plot using the black and the green line.
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Figure 2.1: a) Observed signals. b) The scatter-plot of the observed signals.

As the original sources are independent of each others, a good attempt to recover
them is to project the data to the principal components and thus remove any correlations
between them. The resulting scatter-plot after normalisation of the variances (sphering
or witening) is shown in Fig. 2.2. As illustrated by the red circle, the variance of any
projection equals to one. However, the principal directions (y1 and y2) do not recover
the original sources as shown by the black and the green line. Furthermore, there is no
structure left in the scatter-plot.

The scatter-plot loses all the temporal structure the data may have. A good frequency
representation is given by the discrete cosine transform (DFT). DFT of the sphered signals
is shown in Fig. 2.3a. It seems that there are relatively more low frequencies than high
frequencies. One hyphothesis could be that a source with low frequencies exists in the
data. This source would become more visible (or denoised) by low-pass filtering. The
resulting scatter-plot is shown in Fig. 2.3b.
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Figure 2.2: Scatter-plot of the sphered signals.
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Figure 2.3: a) Amplitude spectra of the sphered signals. b) The denoised signals.

Now all directions do not have unit variance, and the maximal variance may be iden-
tified by another PCA. The principal directions align with the sphered mixing vectors
(black and green line) and the original sources are recovered. The estimated sources and
their amplitude spectra are shown in Fig. 2.4.

The DSS framework has been applied in several application fields. In this laboratory,
we have applied it, for instance, to blind suppression of various interfering signals appear-
ing in direct sequence CDMA communication systems (Sec. 2.6), to exploratory source
separation of climate phenomena (Sec. 2.5) and to neuroinformatics (Ch. 3).
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Figure 2.4: a) The estimated sources. b) The amplitude spectra of the estimated sources.

2.5 Climate data analysis with DSS

Alexander Ilin, Harri Valpola, Erkki Oja

One of the main goals of statistical analysis of climate data is to extract physically mean-
ingful patterns of climate variability from highly multivariate weather measurements. The
classical technique for defining such dominant patterns is principal component analysis
(PCA), or empirical orthogonal functions (EOF) as it is called in climatology (see, e.g.,
[1]). However, the maximum remaining variance criterion used in PCA can lead to such
problems as mixing different physical phenomena in one extracted component [2]. This
makes PCA a useful tool for information compression but limits its ability to isolate indi-
vidual modes of climate variation.

To overcome this problem, rotation of the principal components has proven useful.
The classical rotation criteria used in climatology are based on the general concept of
“simple structure” which can provide spatially or temporally localizated components [2].
Denoising source separation (DSS) is a tool which can also be used for rotating the principal
components. It is particularly efficient when some prior information exists (e.g., the general
shape of the time curves of the sources or their frequency contents). For example, in the
climate data analysis we might be interested in some phenomena that would be cyclic
over a certain period, or exhibit slow changes. Then, exploiting the prior knowledge may
significantly help in finding a good representation of the data.

We use the DSS framework for exploratory analysis of the large spatio-temporal dataset
provided by the NCEP/NCAR reanalysis project [3]. The data is the reconstruction of
the daily weather measurements around the globe for a period of 56 years.

In our first works, we concentrate on slow climate oscillations and analyze three major
atmospheric variables: surface temperature, sea level pressure and precipitation. In [4],
we show that optimization of the criterion that we term clarity helps find the sources
exhibiting the most prominent periodicity in a specific timescale. In the experiments, the
components with the most prominent interannual oscillations are clearly related to the
well-known El Niño–Southern Oscillation (ENSO) phenomenon. For all three variables,
the most prominent component is a good ENSO index (see Fig. 2.5–2.6) and the second
component is close to the derivative of the first one.
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In [5], we extend the analysis to a more general case where slow components are sepa-
rated by their frequency contents. The sources found using the frequency-based criterion
give a meaningful representation of the slow climate variability as combination of trends,
interannual oscillations, the annual cycle and slowly changing seasonal variations.
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Figure 2.5: The dark curve on the upper plot shows the component with the most promi-
nent interannual oscillations extracted with DSS. The red curve is the found component
filtered in the interannual timescale. The lower plot presents the index which is used in
climatology to measure the strength of El Niño. The curves have striking resemblance.
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Figure 2.6: The temperature pattern corresponding to the component with the most
prominent interannual oscillations. The map tells how strongly the component is expressed
in the measurement data. The pattern has many features traditionally associated with El
Niño. The scale of the map is in degrees centigrade.

References

[1] H. von Storch, and W. Zwiers. Statistical Analysis in Climate Research. Cambridge
University Press, Cambridge, U.K, 1999.

[2] M. B. Richman. Rotation of principal components. Journal of Climatology, 6:293–335,
1986.

[3] E. Kalnay and coauthors. The NCEP/NCAR 40-year reanalysis project. Bulletin of
the American Meteorological Society, 77:437–471, 1996.



Independent component analysis and blind source separation 65

[4] A. Ilin, H. Valpola, and E. Oja. Semiblind source separation of climate data detects
El Niño as the component with the highest interannual variability. In Proc. of the Int.
Joint Conf. on Neural Networks (IJCNN 2005), pages 1722–1727, Montréal, Québec,
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2.6 ICA and denoising source separation in CDMA com-

munications

Karthikesh Raju, Tapani Ristaniemi, Juha Karhunen,

Jaakko Särelä and Erkki Oja

In wireless communication systems, like mobile phones, an essential issue is division of the
common transmission medium among several users. A primary goal is to enable each user
of the system to communicate reliably despite the fact that the other users occupy the
same resources, possibly simultaneously. As the number of users in the system grows, it
becomes necessary to use the common resources as efficiently as possible.

During the last years, various systems based on CDMA (Code Division Multiple Ac-
cess) techniques [1, 2] have become popular, because they offer several advantages over
the more traditional FDMA and TDMA schemes based on the use of non-overlapping
frequency or time slots assigned to each user. Their capacity is larger, and it degrades
gradually with increasing number of simultaneous users who can be asynchronous. On
the other hand, CDMA systems require more advanced signal processing methods, and
correct reception of CDMA signals is more difficult because of several disturbing phe-
nomena [1, 2] such as multipath propagation, possibly fading channels, various types of
interferences, time delays, and different powers of users.

Direct sequence CDMA data model can be cast in the form of a linear independent
component analysis (ICA) or blind source separation (BSS) data model [3]. However,
the situation is not completely blind, because there is some prior information available.
In particular, the transmitted symbols have a finite number of possible values, and the
spreading code of the desired user is known.

In this project, we have applied independent component analysis and denoising source
separation (DSS) to blind suppression of various interfering signals appearing in direct se-
quence CDMA communication systems. The standard choice in communications for sup-
pressing such interfering signals is the well-known RAKE detection method [2]. RAKE
utilizes available prior information, but it does not take into account the statistical in-
dependence of the interfering and desired signal. On the other hand, ICA utilizes this
independence, but it does not make use of the prior information. Hence it is advisable to
combine the ICA and RAKE methods for improving the quality of interference cancella-
tion.

In the journal paper [4], various schemes combining ICA and RAKE are introduced
and studied for different types of interfering jammer signals under different scenarios.
By using ICA as a preprocessing tool before applying the conventional RAKE detector,
some improvement in the performance is achieved, depending on the signal-to-interference
ratio, signal-to-noise ratio, and other conditions [4]. These studies have been extended to
consider multipath propagation and coherent jammers in [5].

All these ICA-RAKE detection methods use the FastICA algorithm [3] for separating
the interfering jammer signal and the desired signal. In the case of multipath propagation,
it is meaningful to examine other temporal separation methods, too. The results of such
a study have been presented in [7].

The paper [6] deals with application of denoising source separation [9] to interference
cancellation. This is a semi-blind approach which uses the spreading code of the desired
user but does not require training sequences. The results of the DSS-based interference
cancellation scheme show improvements over conventional detection.

Work on both uplink and downlink interference cancellation in direct sequence CDMA
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systems has been summarized in the joint paper [8]. In this paper, an effort is made to
present both uplink and downlink methods under a unified framework.
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2.7 ICA for image representations

Mika Inki

Already the earliest adapters of ICA on small image windows noted the similarity of the
features to cortical simple cell receptive fields [1, 5]. This can be considered as support for
the notion that the primary visual cortex (and early visual system in general) employs a
strategy of sparse coding or redundancy reduction. In any case, the features obtained by
ICA, and especially their efficiency in image coding and functionality in edge detection,
can be argued to be useful when the objective is to build a hierarchical system capable of
image analysis or understanding.

However, there are many limitations on the usefulness of the ICA description of im-
ages. A basic limitation is that ICA considers the components to be independent, which
they are not in any sense with image data. Also, it can be argued that every possible
scaling, translation and rotation of every ICA feature should also be in the basis, re-
sulting in very highly overcomplete description, computationally infeasible to estimate.
Another computational hindrance is the small window size necessitated by the curse of
dimensionality.

We have focused on removing these limitations, and extending the ICA model to better
account for image statistics, while comparing it to biological visual systems. We have, for
example, examined the dependencies between ICA features in image data [3], built models
based on these findings, studied overcomplete models [2, 4], and examined how the features
can be extended past the window edges, cf. Figure 2.7.

Figure 2.7: A couple of typical ICA features for images and their extensions.
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2.8 Analyzing 0-1 data

Ella Bingham

A novel probabilistic latent variable method for analyzing 0-1-valued (binary) data was
presented. This method, termed as “aspect Bernoulli”, was first described in [1]. The
method is able to detect and distinguish between two types of 0s in the data: those that
are “true absences” and those that are “false absences”; both of these are coded as 0 in
the data.

As an example we may consider text documents in which some words are missing
because they do not fit the topical content of the data — they are “true absences”. Some
other words are missing just because the author of the document did not use them although
they would nicely fit the topic — these are “false absences” and the document could be
augmented with these words. Another application might be black-and-white images in
which some pixels are turned to white by an external noise process, resulting in “true”
and “false” white pixels. Our method finds a specific latent component that accounts for
the “false absences”. Figure 2.8 shows results on this.

Similarly, the method can distinguish between two types of 1s: “true presences” and
“false presences”; the latter could be extra black pixels in a black-and-white image, for
example.

The method can be used in several applications: noise removal in black-and-white
images; detection of false data instances in noisy data; and query expansion where topically
related words are added into a document.

Figure 2.8: Analyzing corrupted black-and-white images. The top row shows the basis
images estimated by the aspect Bernoulli model when corrupted images are fed into the
algorithm. Examples of observed corrupted images are shown in the first column. The
middle rows and columns give the pixel-wise probability that a basis image is responsible
for generating a pixel in the observed image. For example, the observed digit “1” in the
second row is largely generated by the 4th basis image resembling the digit “1”, but the
corrupted pixels are generated by the 8th basis image which is almost completely white
and accounts for the corruption.
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