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9.1 Introduction

Our research on cognitive systems focuses on modeling and applying methods of unsuper-
vised and reinforcement learning. The general aim is to provide a methodological frame-
work for theories of conceptual development, symbol grounding, communication among
autonomous agents, and constructive learning. We also work in close collaboration with
other groups in our laboratory, e.g., related to multimodal environments and sensory fu-
sion.
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9.2 Unsupervised learning for agent communication

Traditional cognitive models and language technologies widely neglect the fact that lan-
guage users learn the language in a large varity of contexts. This leads into varying inter-
pretation of expressions. When this aspect is not carefully considered also the practical
applications suffer from problems related to the basic underlying assumptions. Perhaps the
most striking classical example can be given in the area of information retrieval. Namely,
it has been found that in spontaneous word choice for objects in five domains, two people
favored the same term with less than 20% probability. Moreover, it has been shown that
different indexers, well trained in an indexing scheme, might assign index terms for a given
document differently. It has also been observed that an indexer might use different terms
for the same document at different times. In summary, while developing models of linguis-
tic cognition or some computational tools, we cannot assume that there is a commonly
shared model among the language users. On contrary, we have to be able to develop
systems that are capable, among other things, to conduct meaning negotiations.

Abstract model of adaptive communicating agents

At an advanced level of multi-agent co-operation, as mentioned above, each agent has its
own model of the environment. Thus, each agent has an individual interpretation for the
relationship between the messages and the environment. These differences in the agents’
models motivate the development of methods which provide the agents with the ability to
learn, including learning to interpret messages from other agents.

The agents can perceive their environment, they are part of it, and possibly they can
change it. The environment may be a computerized representation, constructed, or natu-
ral. The borderlines of these domains may, of course, be vague. A natural environment,
in particular, is ever-changing, and consists of various continuous phenomena.

We have considered the possibility of applying a natural, or near-natural language as
the communication medium. The general properties of natural languages necessitate some
capabilities that autonomous agents will need to have. These basic properties of natu-
ral languages and their interpretation include ambiguity, contextuality, open-endedness,
vagueness, and subjectivity.

Ambiguity or vagueness, then, can be considered a necessity when the communication
medium is used in an open and changing environment in which having a distinct and a
priori determined symbol, or combination of symbols, would be difficult, or even impossi-
ble. Finally, to ensure successful communication, both the sending and the receiving agent
must share a similar enough framework of interpretation, and the message or the situation
must contain enough information to activate a proper framework for the receiver.

Adaptive communicating agents based on Self-Organizing Map

We have developed a model of communicating agents based on the self-organizing map
algorithm [5]. An agent has the following properties: it can perceive its simulated environ-
ment, it can move in its environment, it can perform some simple actions, and it can send
and receive messages. The main components of its internal structure include a short-term
and a long-term memory, and a decision making mechanism. Although these two memory
types are closely interconnected, they have different implementations: episodic memory is
dynamic and accurate in nature, whereas semantic memory is adaptive and approximative
being based on the self-organizing map. The key idea is to provide the means for each
agent to associate continuous-valued parameter spaces to sets of symbols, and furthermore,
to “be aware” of the differences in this association and to learn those differences explicitly.
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These kinds of abilities are especially required by highly autonomous agents that need to
communicate using an open set of symbols or constructs in the agent language. [2,4]

The self-organizing map is especially suitable for the central processing element of
autonomous agents because of the following reasons:

e The self-organizing map algorithm modifies its internal presentation, i.e., the code-
book vectors, according to the external input which enables the adaptation of the
agents.

e The self-organizing map is able to process natural language input to form “semantic
maps” [6].

e Symbols and continuous variables may be combined in the input, and are associated
by the self-organizing map. Continuous variables may be quantized, and a symbolic
interpretation can be given for each section in the possibly very high-dimensional
space of perceptual variables [1].

e Because the self-organizing map implements unsupervised learning, processing ex-
ternal input without any prior classifications is possible. The autonomous agent
may form an individual model of the environment and of the relation between the
expressions of the language and the environment [2]. In general, the basic approach
is compatible with the framework of constructive learning theories [3].
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9.3 Reinforcement learning in multiagent systems

Reinforcement learning methods have attained lots of attention in recent years. Although
these methods and procedures were earlier considered to be too ambitious and to lack a
firm foundation, they have been established as practical methods for solving, e.g., Markov
decision processes (MDPs). However, the requirement for reinforcement learning methods
to work is that the problem domain in which these methods are applied obeys the Marko-
vian property. Basically this means that the next state of a process depends only on the
current state, not on the history. In many real-world problems this property is not fully
satisfied. However, many reinforcement learning methods can still handle these situations
relatively well. Especially, in the case of two or more decision makers in the same sys-
tem the Markovian property does not hold and more advanced methods should be used
instead. A powerful tool for handling these highly non-Markovian domains is the concept
of Markov game. In this project, we have developed efficient learning methods based on
the asymmetric learning concept and tested the developed methods with different problem
domains, e.g. with pricing applications.

Markov games

With multiple agents in the environment, the fundamental problem of single-agent MDPs
is that the approach treats the other agents as a part of the static environment and thus
ignores the fact that the decisions of the other agents may influence the state of the
environment.

One possible solution is to use competitive multiagent Markov decision processes, i.e.
Markov games. In a Markov game, the process changes its state according to the action
choices of all agents and can thus be seen as a multicontroller MDP. In Fig. 9.1, there is
an example of a Markov game with three states (s1,$2,53) and two agents. The process
changes its state according to probability P(s;|s1,a',a?),i = 2,3, where a', a? are actions
selected by the agents 1 and 2.

>
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Figure 9.1: An example Markov game with three states.

In single-agent MDPs, it suffices to maximize the utility of the agent in each state. In
Markov games, however, there are multiple decision makers and more elaborated solution
concepts are needed. Game theory provides a reasonable theoretical background for solv-
ing this interaction problem. In the single-agent learning, our goal is to find the utility
maximizing rule (policy) that stipulates what action to select in each state. Analogously,
in a multiagent setting the goal is to find an equilibrium policy between the learning
agents.
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Practical learning methods

We have concentrated on the case where the state transition probabilities and utility values
are not known to the learning agents. Instead, the agents observe their environment and
learn from these observations. In general, we use the update rule in the following form:

QiJrl(Sh a%7 s ’ai\f) = (1 - at)Qi(Sh a%? s ’aé\f) + at[TiJrl + ’Vf(st-‘rl)]? (91)

where Q%(sy, at, a?) is the estimated utility value for the agent i at the time instance ¢t when
the system is in the state s, and agents select actions af,...,a}. r{  is the immediate
reward for the agent ¢ and ~ is the discount factor. f is the function used to evaluate
values of the games associated with states. If a symmetric evaluation function is used, i.e.
Nash or correlated equilibrium function, the update rule is similar for each agent. In the
asymmetric case, there is an ordering (some agents make their decisions prior other agents)
among learning agents and thus the learning rules are different on different levels of the
corresponding agent hierarchy. Further discussion about symmetric learning methods can
be found in [1] and [2]. Respectively, fundamental principles and theoretical analysis of
the asymmetric model can be found in [3].

Grid world example

In this section we provide a simple example of multiagent reinforcement learning. Let
us consider a grid world containing nine cells, two competing agents and two goal cells
(Fig. 9.2). Initial positions of the agents are the bottom corners 1 and 2, respectively, and
they can move to adjacent cells (4-neighborhood) on each round. An agent gets a large
positive payoff when it founds the right goal cell. Additionally, it gets a small negative
payoff if it collides with its opponent, i.e. both agents move into the same cell, and the
agents are returned back to their original cells.

G2 G1

Figure 9.2: The game board used in the grid world example. Agents are initially located
in the cells marked with numbers 1 and 2. Goal cells are marked with symbols G1 and
G2.

When this problem is modeled as a Markov game, a state is a pair containing the
positions of the agents and the actions are the directions of movement. The problem was
solved by using the asymmetric multiagent reinforcement learning method with discount
factor v = 0.99. In this asymmetric setting, the agent 1 decides his action first (leader) and
the agent 2 (follower) reacts optimally to this selection. The learning process converged to
the optimal paths (policy functions) shown in Fig. 9.3. Corresponding convergence curves
can be found in Fig. 9.4, in which changes in Q-values, i.e. the Euclidean distance between
two vectors containing Q-values of the consecutive iterations of the learning algorithm, are
plotted against iteration rounds. More detailed empirical evaluations of the asymmetric
learning method can be found in [4] and [5].
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Figure 9.3: Some optimal paths generated by the asymmetric multiagent reinforcement
learning model.
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Figure 9.4: The convergence of the asymmetric learning method in the grid world example
problem.
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9.4 Emergence of linguistic features using Independent
Component Analysis

Language technology is very central area in the development of intelligent systems. Tradi-
tionally, much of the development work has been manual: encoding linguistic and domain
knowledge even for a single system may even take years. We have been studying how
aspects of human language learning could be modeled, potentially resulting into (a) more
realistic cognitive models than those based on, e.g., rule-based representations, and (b)
efficient tools for applications in, for instance, information retrieval, natural language inter-
faces, machine translation and computer supported collaborative work. In the following,
we consider one specific aspect of language learning, i.e, how categories of words can be
learned from input data without supervision.

Word Category Learning

A word can belong to several syntactic categories simultaneously. The number of categories
is even higher if one takes into account the semantic categories. Such categorization has
traditionally been determined by hand: the categories into which a word belongs to are
described in a manually collected dictionary.

In order to facilitate learning of word categories, the self-organizing map has earlier
been used in the analysis of word context data, e.g., in [4] (artificially generated short
sentences), and [1] (Grimm fairy tales). The result of a word context analysis based on
the self-organizing map algorithm can be called a word category map. Areas or local
regions on a word category map are implicit categories that have emerged during the
learning process. Single nodes in the map can be considered as adaptive prototypes. Each
prototype is involved in the adaptation process in which the neighbors influence each other
and the map is gradually finding a form in which it can best represent the input.

One classical approach for defining concepts is based on the idea that a concept can
be characterized by a set of defining attributes. In contrast, the prototype theory of
concepts involves that concepts have a prototype structure and there is no delimiting set
of necessary and sufficient conditions for determining category membership that can also
be fuzzy. Instances of a concept can be ranked in terms of their typicality. Membership
in a category is determined by the similarity of an object’s attributes to the category’s
prototype.

The emergent categories on a word category map are implicit. The borderlines for any
categories have to be determined separately. It would be beneficial if one could find more
explicit categories in an automated analysis. Moreover, each word appears in one location
of the map. This means, among other things, that one cannot have a map in which several
characteristics or categories of one word would be represented unless the the categories
overlap and accordingly the corresponding areas of the map overlap. In some cases, this
is the case: it is possible to see the area of modal verbs inside the area of verbs, e.g., on
the map in our earlier research [1]. However, one might wish to find a sparse encoding
of the words in such a way that there would be a collection of features associated with
each word. For instance, a word can be a verb, a copula and in past tense. It is an old
idea in linguistics to associate words with features. The features can be syntactic as well
as semantic However, these features are, as already mentioned, given by hand, and the
membership is crisp.
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Independent component analysis of word contexts

We have studied the emergence of linguistic representations through the analysis of words
in contexts using the Independent Component Analysis (ICA) [3]. The ICA learns features
automatically in an unsupervised manner. Several features for a word may exist, and the
ICA gives the explicit values of each feature for each word. In our experiments, we have
shown that the features coincide with known syntactic and semantic categories. As a
simple example, the method is able to find a feature that is shared by words such as
“must”, “can” and “may”, i.e. modal verbs.

In one of our experiments, we formed a context matrix C in which ¢;; denotes the
number of occurrences jth word in the immediate context of ith word, i.e, ith word
followed by jth word with no words between them. This provided a 100 x 2000 matrix. A
logarithm of the number of occurrences was taken in order a reduce the effect of the very
most common words in the analysis and finally each word vector was normalized to unit
length.

The results of the ICA analysis corresponded in most cases very well or at least rea-
sonably well with our preliminary intuitions. The system was able to automatically create
distributed representations as a meaningful collection of emergent linguistic features; each
independent component was one such feature. For instance, Fig. 9.5 shows how the third
component is strong in the case of nouns in singular form. A similar pattern was present
in all the nouns with three exceptional cases with an additional strong fourth component
indicated in Fig. 9.6. The reason appears to be that “psychology”, “neuroscience”, and
“science” share a semantic feature of being a science or a scientific discipline. This group
of words provide a clear example of distributed representation where, in this case, two
components are involved.

Figure 9.5: ICA features for “model”, “network” and “problem”.

Figure 9.6: ICA features for “neuroscience”, “psychology” and “science”.

We have been able to show how independent component analysis can bring an ad-
ditional advantage of finding explicit features that characterize words in an intuitively
appealing manner. Independent component analysis appears to make possible a quali-
tatively new kind of result which have earlier been obtainable only through hand-made
analysis. In the future, we will study more in detail what is the relationship between
automatically acquired categories and manually defined ones.
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