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5.1 Biomedical data analysis

Ricardo Vigário, Jaakko Särelä, Elina Karp, Jarkko Ylipaavalniemi

In the period spanned by this report, we have enlarged our ongoing collaboration with the
Brain Research Unit of the Helsinki University of Technology to the recently established
Advanced Magnetic Imaging Centre, from the same university. We further explored con-
tacts with the radiology department of Helsinki University Central Hospital. International
collaborations were as well pursued with very positive outcomes.

The global list of publications, at the end of this report, contains further references to
this work. The ones in this section should give a good starting point to the understanding
of the results achieved within the project.

Coherence studies

Strong coherence around 20 Hz is known to exist between the MEG recording the pri-
mary motor cortex and the contralateral electromyogram (EMG) during isometric muscle
contraction. In [2, 1], we applied a temporal decorrelation technique to identify the un-
derlying brain areas producing signals coherent with the EMG. The algorithm chosen, the
temporal decorrelation source separation (TDSEP [3]), exploits efficiently the temporal
structure present in the data.

To reduce the occurrence of overlearning of the TDSEP algorithm in such high-
dimensional data set (204 channels were recorded), a suitable reduction was performed
during its whitening stage. Yet, we are now not necessarily interested in reconstructing
the original data, but rather in the preservation of the corticomuscle coherence between
the components and the reference EMG. Hence, we choose to sort the principal compo-
nents according to their coherence power, discarding those that contribute the least to the
coherence, in the vicinity of the characteristic 20 Hz.

Figure 5.1 presents the top 7 coherences between the 204 MEG channels and the right-
hand EMG. The strongest coherence peaks around 14 Hz, which is close to the values
suggested in the literature.
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Figure 5.1: Strongest coherences between the MEG channels and the left-hand EMG.

In Fig. 5.2, the 7 most coherent TDSEP components are shown. Only the first signal
shows significant coherence values (even higher than that of any single MEG channel). The
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Figure 5.2: Coherence plots for the 7 most coherent TDSEP components.
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field patterns associated with several TDSEP components, see Fig. 5.3, show selectivity
over the central left and right hemispheres, and are well modeled by current dipoles in the
respective primary motor cortices.

(a) (b)

Figure 5.3: Field patterns and equivalent current dipoles for the 1st TDSEP component
(a) and the 25th (b).
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Structural MRI

Magnetic resonance imaging (MRI) is a non-invasive technique capable of producing 3D
high resolution images of the human body. It relies on the interaction between the intrinsic
magnetic fields of nuclei and strong externally applied magnetic fields and radiofrequency
pulses. By adjusting internal parameters, related to the onset of the external pulses
and fields, one can change the focus of the image on different anatomical and physio-
logical properties of the tissues. A realistic simulation of those differences is depicted in
Fig. 5.4a [1], for the standard T1, T2 and PD (proton density) parameter set. From the
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Figure 5.4: Simulated MRI slices for different imaging parameters (a) and the independent
components (b).

observation that different tissues react differently to the changes of parameters, together
with an approximation that each image is composed of linear mixtures of independent
tissues, we have used ICA as a mean to isolate each such tissue. This was performed
with both simulated and real MRI scans, for various MRI parameter sets. These included
the standard 3, to a much enlarged 13 set. The result of applying ICA to the 3 image
simulated data can be seen in Fig. 5.4b.

A quick glance to Fig. 5.4b reveals that the independent components show greater
tissue selectivity than the original images. The first frame, e.g., depicts nearly only cere-
brospinal fluid, whereas the second frame show clearly multiple sclerosis (black spots),
invisible in the classification of the raw data.

Tissue segmentation was as well studied on both unprocessed and ICA-processed data,
by clustering and judiciously coloring Self-Organizing Maps (SOMs), trained for each data
set. The results, for the same simulated data, are shown in Fig. 5.5.

(a) (b) (c) (d) (e)

Figure 5.5: Ground truth segmentation for the simulated MRI data (a), and that found
in SOM for the 3-image (b) and the 13-image (c) data sets. Same for ICA-preprocessed
in (d) and (e).

Most structures are already segmented in the unprocessed data. Yet, the multiple scle-
rosis is somewhat hard to detect there, and is only clearly visible from the ICA processed
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13-image data set. This suggests that both the increase of multispectral MRI and the
pre-processing are efficient strategies for isolating such tissues.

Similar results were observed for real data [1]. Additionally, the application of ICA
to the innovation portion of the MR image yields somewhat better results than the ones
observed for the normal use of ICA.

ICA preprocessing of MRI data was successfully used in a different segmentation ap-
proach, where the acting principle is now a semi-unsupervised use of Support Vector
Machines [2]. The results are very promising (see Fig. 5.6).

Figure 5.6: Segmentation of the simulated data using support vector machines.

Functional MRI

Functional magnetic resonance imaging (fMRI) is based on similar principles as structural
MRI. Yet, with the cost of a clear decrease in spatial resolution, the collection of a full
volume in fMRI takes much less time, allowing for multiple images in succession.

Different oxygenation levels in the blood result in variations of its magnetic properties,
hence in the MR image. Using this principle, together with a clear pattern of stimulation,
several images are collected. One such pattern is the recording of n images with stimulus,
followed by a series of m in resting mode. Standard analysis then look for voxels, or
combinations of voxels, which show an activation pattern in relation to the stimulus.
When ICA is used to process fMRI data, no such stimulus-lock is imposed.

The linear model assumed in our fMRI study is ’transposed’ to the one used in EEG
and MEG recordings, i.e., the independence is not assumed to exist in time, but rather
in space. The mixing matrix, which gives the spatial patterns of activation in EEG and
MEG is now the temporal course of the spatially independent components.

Fig. 5.7 shows that, even in a blind source separation framework, ICA is capable of
identifying components in clear agreement with the particular auditory type of stimulation.
This preliminary study [3] showed as well that brain activity, as well as artifacts, with no
relation to the temporal activation of the stimulus can be detected. Due to the lack
of relation to the stimulus, those signals would be very hard to identify using classical
processing.

Furthermore, even though one asset of ICA is to be unlocked to the stimulus, one may
find useful to search for methods that incorporate additional (small) amounts of prior
information. These can be based on, e.g., semi-blind source separation 2 or Bayesian
methods 3
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Figure 5.7: Independent component, directly related to the auditory stimulus.
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[1] Elina Karp, Hugo Gävert, Jaakko Särelä, and Ricardo Vigário. Independent compo-
nent analysis decomposition of structural MRI. In Proc. of the 2nd IAESTED Int.
Conf. on Biomed. Eng. (BioMED’04), Innsbruck, Austria, 2003.

[2] Elina Karp and Ricardo Vigário. Unsupervised MRI tissue classification by sup-
port vector machines. In Proc. of the 2nd IAESTED Int. Conf. on Biomed. Eng.
(BioMED’04), Innsbruck, Austria, 2003.

[3] Jarkko Ylipaavalniemi and Ricardo Vigário. ICA decomposition of an auditory func-
tional MRI reveals thalamic activation. Submitted to a conference.


