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4.1 The statistical structure of natural images and visual
representation

Our research concentrated on modelling visual perception using statistical models. This
work was a direct continuation of what was reported in the previous biennial report.

Our basic approach is to build models of the statistical structure of the typical input
that the perceptual system receives, and estimate the parameters of the model from realis-
tic input, such as digital photographs of wild-life scenes, or digital video. We then describe
the function of parts of the visual cortex as statistical estimation and inference in such
models. Our modelling has been largely based on extensions of independent component
analysis and blind source separation methods. The goal is typically to transform a data
vector into components that are statistically independent or whose dependency structure
is quite simple.

We have developed a number of new models that extend the now well-known results
on independent components of natural images:

Non-negative sparse coding This model is specialized to analysis of data that is non-
negative. More precisely, the data is usually positive and close to zero, and occasionally
gets large positive values [1,2]. The model seems especially suited for analysis of higher-
order features that are computed from outputs of lower non-negative features, such as
complex cells.

Models of variance dynamics It is well-known that the independent components of
natural images are not independent. Our previous work already modelled some of the
dependencies that remain after ICA. Yet, no existing model have been able to estimate
a full two-layer model of natural images, where the seoncd layer explains some of the
dependencies left after the first linear layer. Previous research has only been able to
estimate two-layer models when one of the layers has been fixed. We developed a model
where two layers can be estimated based on the temporal structure of natural image
sequences [4]. The layers correspond to simple and complex cells in the primary visual
cortex. See Fig. 4.1 for an illustration of the main kinds of dependencies, and Fig. 4.2 for
some dependencies estimated from real data.

Bubble coding We have proposed a unifying framework [6] for several models of the
statistical structure of natural image sequences. The framework combines three properties:
sparseness, temporal coherence, and energy correlations. It leads to models where the joint
activation of the linear filters (simple cells) takes the form of “bubbles”, which are regions
of activity that are localized both in time and in space, space meaning the cortical surface
or a grid on which the features are arranged. The concept of bubbles is closely related
to invariant features such as those coded by complex cells; the principle is illustrated in
Fig. 4.3.

Double-blind source separation These theoretical developments in biological mod-
elling lead to the development of a new method of blind source separation [5]. The new
method separates sources without the need for an explicit parametric model of their de-
pendency structure. This is possible by some general assumptions on the structure of the
dependencies: the sources are dependent only through their variances (general activity
levels), and the variances of the sources have temporal correlations. The method can be
called double-blind because of this additional blind aspect: We do not need to estimate



Computational neuroscience 89

t t t
temporal
cell 1 / <L>//

spatial spatiotemporal

Figure 4.1: Illustration of the different types of dependencies found in natural image
sequences. Consider a stimulus that consists of a line segment that moves accross the
receptive fields of two linear neurons with receptive fields that have simile location, ori-
entation and frequency. The outputs of a given neuron in two consecutive time steps are
dependent. Further, two neurons with similar receptive fields have dependent outputs.
Also, the outputs of similar neurons in consecutive time points are dependent.

Figure 4.2: Our two-layer model in [4] was able to estimate linear features and dependen-
cies between the features. Each row shows the features with the highest and the lowest
dependencies with respect to the reference feature on the left. Features with high depen-
dencies code for similar orientation and frequeny. Features with low dependencies have
very dissimilar parameters.

(or assume) a parametric model of the dependencies, which is in stark contrast to most
previous methods.

Conditional and comparative statistics We have further investigated how the statis-
tics are modified by conditioning by the value of one independent component [7]. If the
components were really independent, this conditioning should not change anything, but
our results show that it does. Comparison of the statistics of natural images with others
kinds of images have also been performed [8].

Bayesian inference in the visual system On a more theoretical note, we proposed a
model that explains some aspects of the response variability of neurons using the frame-
work of Bayesian inference. It is proposed that the variability reflects a Monte Carlo
sampling of the posterior probability distribution of perceptual parameters, given the in-
put stimulus [3].
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Figure 4.3: An illustration of a bubble representation. The plots show the outputs of filters
as a function of time (horizontal axis) and the position of the filter on the topographic grid
(vertical axis). Each pixel is the output of one unit at a given time point, gray being zero,
white and black meaning positive and negative outputs. For simplicity, the topography is
here one-dimensional. In the basic sparse representation, the filters are independent. In
the topographic representation, the activations of the filters are also spatially grouped. In
the representation that has temporal coherence, they are temporally grouped. The bubble
representation combines all these aspects, leading to spatiotemporal activity bubbles. Note
that the two latter types of representation require that the data has a temporal structure,
unlike the two former ones.
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