
Chapter 16

Other projects

187



188 Other projects

16.1 PRIMA—Proactive information retrieval by adaptive

models of users’ attention and interests

Samuel Kaski, Jarkko Salojärvi, Eerika Savia, Kai Puolamäki

Introduction

Successful proactivity, i.e. anticipation, in varying contexts requires generalization from
past experience. Generalization, on its part, requires suitable powerful (stochastic) models
and a collection of data about relevant past history to learn the models.

The goal of the PRIMA project is to build statistical machine learning models that
learn from the actions of people to model their intentions and actions. The models are
used for disambiguating the users’ vague commands and anticipating their actions.

In information retrieval we investigate to what extent the laborious explicit relevance
feedback can be complemented or even replaced by implicit feedback derived from patterns
of eye fixations and movements that exhibit both voluntary and involuntary signs of the
users’ intentions. Inference is supported by models of document collections and interest
patterns of users.

PRIMA is a consortium with Complex Systems Computation Group, Helsinki Insti-
tute for Information Technology (Prof. Petri Myllymäki), and Center for Knowledge and
Innovation Research (CKIR), Helsinki School of Economics (Doc. Ilpo Kojo). It started
in 2003, and the first results are on modeling of eye movements.

Predicting relevance from eye movements

We measure eye movements during reading, and based on this implicit feedback, try to
infer how relevant the document is to the user. Eye movements have earlier been used
as alternative input devices in human-computer interfaces (e.g. [5]), and recently in a
proactive dictionary which becomes automatically activated [1]. To our knowledge, they
have not been used in information retrieval before.

The main challenges are that (i) the signal is complex and very noisy, and (ii) inter-
estingness or relevance is higly subjective and thus hard to define. We started the project
by feasibility studies to find out whether the problems are solvable.

We constructed a controlled experimental setting in which it is known which documents
are relevant, and then tried to learn relevance from measured eye movement patterns.
The user was instructed to find an answer to a specific question, and then shown a set of
document titles (Fig. 16.1), of which some were known to be relevant.

In the first feasibility study [3] we extracted a set of standard features [2] from eye
movements for each word and combined them to title-specific feature vectors. The two
goals of analysing the data were to find out whether relevance can be estimated in this
simplified setup using standard features, and which features were important in predicting
the relevance. The data was explored with unsupervised methods (Principal Component
Analysis and Self-Organizing Maps), and their supervised versions, Linear Discriminant
Analysis (LDA) and SOM that learns metrics (cf. Section on Learning metrics).

The results were encouraging; even a simple linear classifier was able to determine
relevance clearly better than by chance (80.5% vs. 63%), and a subset of five features was
sufficient. There were also many non-linear effects in the data, implicating that a better
discrimination is to be expected with a non-linear classifier.

Classification accuracy is also likely to improve when the temporal structure of the data
is taken into account. We have started work on Hidden Markov Models (HMMs), which
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Haluaisit tietää lisää, miten Kent suhtautuu saamaansa suosioon

Mikä seuraavista otsikoista eniten liittyy asiaan

Näillä autoilla törmäillään

Belgian Mathilde odottaa toista lasta

Retkiluistelijat jäivät jään vangeiksi Ruotsissa

Tupakantuskaan uusi kohulääke

Kent arvostelee Ruotsin valtiota

Hopea ei kelvannut Hermann Maierille

Kent teki biisin suomeksi

Finnair−stadionin tekonurmesta päätös tänään

Menestys ei ole kihahtanut Kentillä hattuun

Gimmelin Ushmaa heitettiin kakulla

Pasi Nielikäinen edes yritti taklata kärppäpaidassa

Kent kahmi ennätysmäärän Grammiksia

Figure 16.1: The experimental setup. Left: The eye movements of the user are being
tracked with a head-mounted eye tracker. The tracker consists of a helmet with two
cameras; one monitors the eye and the other one the visual field of the subject. Right:
The eye movement pattern during reading plotted on the assignment. Lines connect
successive fixations, denoted by circles (Matlab reconstruction). Each line contains one
document title, and some of the titles are known to be relevant.

have earlier been used for segmenting the low-level eye movement signal to detect focus of
attention (see [6]) and for implementing (fixed) models of cognitive processing [4]. First
results of applying HMMs to our problem setting show improvement of the classification
accuracy from 69.2% (using LDA) to 75.8% (NIPS Machine Learning Meets the User
Interface workshop, December 2003).
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16.2 Data analysis using a tree-shaped neural network

Jussi Pakkanen

Modern data analysis problems usually have to deal with very large databases. When the
amount of data samples grow to millions or tens of millions, many traditional tools and
techniques slow down noticeably. This, combined with the curse of dimensionality, makes
problems involving large data sets very difficult to approach.

Classical computer science has a long history of dealing with data sets. One of the
most common approaches is the divide and conquer approach, where a large problem
is separated into smaller subproblems. Another way to approach the problem is using
different kinds of search trees, which efficiently index the data.

Our research has focused on finding novel methods to combine neural network systems
with large data set manipulation tools of computer science. The goal is to create new
neural systems that can be used to analyze huge data bases efficiently while retaining a
high precision. The first realization of this research is The Evolving Tree [1].

Figure 16.2: The general architecture of the Evolving Tree and an example of adaptation
to data.

Figure 16.2 demonstrates the basic properties of the Evolving Tree. The left image
shows how the tree is made of two kinds of nodes. The black leaf nodes are the actual
data analysis nodes, which perform vector coding. The white trunk nodes form an efficient
search tree to the leaf nodes. The arrows show how a single search on the tree might
progress. During training the Evolving Tree grows by creating new leaf nodes to those
areas of the data space that are deemed to be underrepresented.

The right image on Figure 16.2 shows how the Evolving Tree adapts to an artificial
two-dimensional data set. The dots are the code vectors.. The training had started with
a single node, but the tree has grown in size to better explain the data.

Tests on artificial and real world data indicate that the Evolving Tree could be applied
to several problems, such as pattern recognition, data mining, density estimation, and
exploratory data analysis.
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16.3 Computational model of visual attention

Teuvo Kohonen

By means of simple modeling approaches, an explicit explanation has been given in this
work to the following phenomena: 1. Automatic activation of a subset of visual signal
paths, equivalent to an “attentional window,” such that the width of the window is defined
by the relative variances of the visual signals. 2. Narrowing of the “attentional window”
when small saccadic eye movements, voluntary or involuntary, are made. This effect can
be shown to ensue from the same model, when the primary signals are further high-pass
filtered. 3. Shifting of the “attentional window” when strong or novel stimuli (distractors)
occur eccentrically in the visual field.

The channel organization

Consider the circular subareas in Fig. 16.3, which delineates a simplified model retina. In
this kind of mapping the small foveal areas and the large peripheral areas are thought to
project into areas of equal size in the higher parts of the brain. Then we may imagine that
the signal paths starting at the retina and ending up on the visual cortex are organized
in spatially ordered, functionally separate channels corresponding to the small circles in
Fig. 16.3. A channel is here identified with a set of signal paths, the transmittance of
which is controlled by a common control circuit. The transmittances of the channels are
assumed to have soft shoulders, e.g., Gaussian.

Figure 16.3: Placement of the channels over a hypothetical model retina, around the fovea.
A control circuit with corresponding (effective) diameter is associated with each circle.

Assume now that the control circuit of each channel is able to analyze some kind of
information content in its incoming signals. The control circuits shall also be able to
compare their information contents and mutually compete on the permission for activation.

Consider that if we want to compare the information content of subareas relating to
such an inhomogeneous sampling system as the retina, any information measure should
be related to the resolution of vision in the corresponding subarea.

If the cross section of each channel is then partitioned into an equal number of subfields,
if the intensity of the picture is averaged over each such subfield, and if the variance of
these averaged values is then taken, we obtain a robust measure that is independent of
the width of the channel and describes variations of the signal intensity at the given
resolution. Let us call this kind of “information measure” the resolution-related variance.
Notwithstanding, since the absolute variations are slightly different in the light and dark
areas of the image, it has further turned out, for photographic images at least, to be most
effective to divide the variance by the average of the signal values in the channel.
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The sampling grid

In simulations, photographic images were used where the pixels were defined in an orthogo-
nal grid. The resolution-related variance in each channel shown in Fig. 16.3 was computed
by placing a sampling grid over the channel (Fig. 16.4); the diameter of the sampling grid
shall be selected to correspond to the diameter of the due channel, and thus around the
assumed direction of the gaze the sampling grid shall be smaller and have fewer pixels,
whereas the diameter of the grid shall be selected wider and more pixels must be covered
with increasing distance from the direction of the gaze. A constant number, e.g., seven
subsets of pixels over each sampling grid were defined, and the averages avi, i = 1 . . . 7
of the pixels over these subsets were computed. The resolution-related variance for each
sampling grid was evaluated by computing the variance of the avi. After that, the variance
was divided by the average of all pixels of this grid. The figure so obtained defines the
variable Variance in Eq. (16.1).
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Figure 16.4: Two examples of the sampling grids used for the control of gating of signal
transfer in simulations. The small dots correspond to pixels. Over each of the seven square
areas, the average avi, i = 1 . . . 7 of the pixels is computed, whereafter the variance of the
avi is evaluated, and the variance is further divided by the average of pixels over the seven
squares.

Optimal width of a channel

Before discussing the system of channels as delineated in Fig. 16.3, it may be interesting
to find out how an optimal width of a channel, concentrated at a particular location of the
image, is determined by the resolution-related variance.

Consider that we try channels of varying width at a certain location of the image. We
are looking for the width of the control grid that maximizes the normalized variance of the
local averages avi of the pixel values, denoted Variance. Let us call the image data vector
Image. Let Grid(w) mean the choice for the grid with width w; then the “optimal”
width wo is defined to be

wo = arg max
w

{Variance[Grid(w), Image]} . (16.1)

A robust optimization of wo in Eq. (16.1) was carried out over a discrete set of five
sampling grids, with their widths varying from 10 to 80 pixels, respectively.

In the first series of simulations illustrated in Fig. 16.5 we demonstrate the “optimal”
width of the attentional window, when the gaze was directed at various objects of different
widths; the fish, the palm, and the telephone pole, respectively.
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Figure 16.5: Demonstration of the opening of attentional windows, the widths of which
were automatically determined by the structures present in the area around the gaze. First
and third picture: original images. The rest of the pictures show attentional windows,
when the gaze was directed to one fish, the palm, and the telephone pole, respectively.

Narrowing of the attentional window

The next phenomenon that is explainable by the optimization approach is the narrowing
of the attentional window when the gaze is moved, voluntarily or involuntarily, by a small
amount.

Let us assume that every sampling grid, to some extent, has also high-pass filter
properties, i.e., it enhances transient (phasic) values of the signals it samples. Let these
temporal variations of the signals ensue from the shifts of the gaze, i.e., translations of the
input image over the sampling grids.

Consider the spatial frequencies of the images: if the translation is small, the absolute
value of the difference is approximately proportional to the Euclidean norm of its gradient,
in which high spatial frequencies are enhanced in proportion to the frequency. In the
evaluation of the optimal width wo from Eq. (16.1), the variances computed from the avi

for the difference image thus decrease with the width of the grid, too, and the optimal
width wo is decreased.

When only a fraction of the previous image is subtracted from the new image, a similar
shift of wo towards smaller values, although a weaker one, can be seen. This effect is then
reflected as narrowing of the attentional window. In Fig. 16.6 a sequence of images is
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shown, where the subtracted fraction was 50 per cent of each previous image.

Figure 16.6: Automatic narrowing of the attentional window, when the variances were
computed on the basis of images from which 50 per cent of the previously sampled trans-
lated image was subtracted. The three pictures form a sequence, in which the gaze was
shifted in steps, the size of which became successively smaller.

Attentional window as an activated subset of channels

Finally we shall consider the more complete “biological” case in which the set of channels is
fixed and their sizes and positions were defined in Fig. 16.3. For each channel, a sampling
grid of corresponding diameter is associated.

Instead of looking for the optimized width of the channel as before, we thus now keep
the positions and widths of the channels fixed and try to determine a combination of
k activated channels over which the normalized resolution-related variance of the avi is
highest. In this way, while most of the channels are located eccentrically with respect to
the direction of the gaze, the combination of the activated channels defines a more or less
symmetric (usually noncircular) attentional window.

In the simulation presented in Fig. 16.7 we thus use the 33-channel “retina” of Fig. 16.3
and let four highest-variance channels define the attentional window. As can be seen, the
four channels together tend to emphasize a part of the visual field where some meaningful
pattern is present.

It is also discernible that if the variance in the central part of the visual field is low,
prominent eccentric patterns tend to attenuate weaker parts of the visual field, which can
then be interpreted as the distraction of attention by the prominent eccentric objects.
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Figure 16.7: Examples of attentional windows spanned by a combination of four activated
channels. The black cross indicates the direction of the gaze. The first picture is another
original image, of which a part (the statue) is selected and emphasized in the second pic-
ture. In the third picture (cf. the first picture in Fig. 16.5, a butterfly-formed attentional
window, compassing two of the fishes, is opened. In the lowest picture (cf. the third pic-
ture in Fig. 16.5), the form of the resulting attentional window is oblong and the window
stretches along the trunk of the tree.
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