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13.1 Acoustic modeling

Acoustic modeling in automatic speech recognition (ASR) means building statistical mod-
els for subword units based on the feature vectors computed from speech. Feature repre-
sentation is an important part of any pattern recognition system and ASR is no exception.
It is difficult to develop any theoretically optimal feature extraction method which would
minimize the recognition error. Usually the discriminative training is applied to the es-
timation of the model parameters and the feature representation is more or less fixed,
see e.g. [1]. In practice, several feature extraction methods have been experimented and
during the long history of ASR, some of them have been experimentally proved to be more
beneficial than others.

In most systems the speech signal is first chunked into overlapping 20-30 ms time
windows at every 10 ms and the spectral representation is computed from each frame.
A commonly used feature vector consists of mel-frequency cepstral coefficients (MFCC)
which are the result of the discrete cosine transform (DCT) applied to the logarithmic mel-
scaled filter bank energies. Local temporal dynamics can be captured by concatenating
the first and second order delta features (time differences) to the basic feature vector.
Computation of delta features can be considered as a fixed transformation to the block
of original feature vectors. We have experimented also other linear and nonlinear feature
transformations.

Figure 13.1: Feature transformation. One or more frames (five in this figure) original
feature vectors, e.g. logarithmic mel-spectra are fed to the linear (matrix) or nonlinear
(MLP network) feature transform which performs the projection of the original feature
vector (or concatenation of them) to the new feature space. The output is used as a feature
vector in the mixture-of-Gaussians based HMM system.

In our experiments, unsupervised transformations were based on principal component
analysis (PCA) and independent component analysis (ICA) and discriminative transforma-
tions were based on linear discriminant analysis (LDA) and multilayer perceptron (MLP)
networks. These transformations were experimented in TIMIT phone recognition [2] where
clear improvements were gained in the recognition rate compared to the baseline MFCC
feature. In another experiment [3], the acoustic models were trained using 60 hours of
HUB5 training data and they were tested using OGI Numbers corpus. The combination
of the PLP cepstrum and the MLP network based feature transformation stream gave the
best result. The baseline word error rate was reduced from 4.1 % to 3.1 %.
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Currently used speech recognizers are typically based on hidden Markov models where
HMM states are modeled by Gaussian mixtures. In order to avoid the large number of
parameters in the model, the covariance matrices of the Gaussians are diagonal. We have
experimented the maximum likelihood linear transformation (MLLT) [4], which takes the
diagonal Gaussian assumption into account when forming the transformation. The result
is not the global PCA transform, since in our case the data is not modeled by a single
Gaussian with a single covariance matrix but each speech unit is modeled by its own
mixture of Gaussians where the diagonal covariance matrices need not be the same. Using
the MLLT framework, feature transformations based on heteroscedastic linear discriminant
analysis (HLDA) can also be constructed. Contrasted to the basic LDA, HLDA does not
assume equal class covariance matrices. Applying these transformations to Finnish speech
recognition system gave very promising results:

monophone HMMs triphone HMMs
letter error % word error % letter error % word error %

baseline MFCC 11.0 44.0 4.7 24.8
MFCC+MLLT 9.0 40.2 4.5 24.1
MFCC+HLDA 8.4 37.5

Besides speech recognition, we have also investigated methods for representing high-
dimensional feature vectors. In [5] it was studied how to capture the intrinsic dimen-
sionality of speech using fractal-dimensionality measure, multi-dimensional scaling, and
hypercubical Self-Organizing Map. These results can give insights to the data being mod-
eled and that way contribute also to the developments in speech recognition.

State-of-the-art speech recognizers are complex systems with large number of parame-
ters. This raises the challenge how to get robust estimates and what is the optimal number
of model parameters. One elegant way is to use Bayesian modeling. In [6], standard max-
imum likelihood (ML) estimation was compared to the variational Bayesian approach for
training mixtures of Gaussians. Advantages of Bayesian approach were clear: estimation
converged faster, there was no tendency of overfitting, and the likelihoods of unseen test
data were better for any given number of mixture components.
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13.2 Language modeling

Language model unit selection for speech recognition

The traditional method to model language for speech recognition is the n-gram model.
The probability of a new word is estimated based on a few previous words. For Finnish,
estimating the n-gram probabilities is difficult, since there is a vast number of different
word forms. For example, a single verb has theoretically thousands of inflected word
forms. We have chosen to split the words to smaller units to have fewer probabilities to
estimate and to cover a larger vocabulary. As subword units we have evaluated syllables
and statistically found morpheme-like units [1].

For Finnish, words can be split into syllables based on a few simple hyphenation rules,
except on boundary between parts of a compound word. Our algorithm implements the
simple ruleset and makes infrequently mistakes on compound words. A morpheme is
the smallest meaning bearing element of a word. We have used an automatic statistical
method for finding morpheme-like units, called morphs (see Section 12.1).

In our evaluations, using syllables for language model units decreases the recognition
word error rate 22% relative to word based model. Using morphs reduces the word error
rate 44% relative to word based model. The morphs seem to be better suited for language
modeling, since each morph has a distinct meaning which is useful for language modeling.
For syllable and morph based models, we have another advantage: we do not need to know
all of the words of Finnish language, since the words can be constructed from the smaller
pieces.

To assess the language-independence of the word splitting method, we applied the
same algorithm to Turkish, which is another agglutinative language1. To compare the
performance with baseline speech recognizer, the n-gram models were trained both to these
new data-driven and old rule-based morphemes and words. The data-driven morphemes
achieved clearly the lowest error rates in all large-vocabulary continuous speech recognition
tests made [2]. The work with Turkish data is done in a close collaboration with the
University of Colorado in Boulder and the Middle East Technical University.

Focusing language models in speech recognition

The efficient language processing tools developed in the laboratory (WEBSOM) have been
applied to organize language models based on the topical structure of the discourse [3].
The objective is to increase the language modeling accuracy and to obtain improved speech
recognition results by automatically detecting and focusing into the best available language
model for the recognition task at hand. This work is done in a close collaboration with
the Natural language modeling group (see Section 12.3).

x(t+1)x(t−1) x(t)x(t−2)

s(t−2) s(t) s(t+1)s(t−1)

Figure 13.2: The state-space model for language modeling. s(t) is the current state and
x(t − 1) the previous observation.

1In agglutinative languges words frequently have multiple suffices concatenated one after each other.
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State-space method for language modeling

The most common language model for speech recognition is the n-gram model. With back-
off and smoothing, it provides a relatively robust model.However, the n-gram model cannot
generalize from similar words: seeing a phrase like “Monday morning was clear” does not
help modeling the phrase “Tuesday evening is cloudy” at all. This kind of generalization
can be achieved by clustering similar words together and interpolating this cluster n-gram
with a regular n-gram.

We have tried to achieve the generalization by mapping the words to n-dimensional
feature space, so that similar words are mapped close to each other. The probability of
a word is calculated as a smooth function of the features and the previous state, leading
to good generalization. This kind of approach with neural networks has been shown to
yield good results [4]. The mathematics of our method are based on linear state-space
modeling, which is also used in famous algorithms like Kalman filtering. We have added
explicit dependencies to previous observations to make the teaching of the model simpler
(see Fig. 13.2).

During the first experiments, we simply tried predicting the next letter based on previ-
ously seen letters, since the learning algorithm was computationally extremely demanding
[5]. We are currently working on making the algorithm suitably fast for word prediction.
Figure 13.3 shows a hypothetical idealized picture of both the feature and the internal
state of the model.
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Figure 13.3: The ideal state-space language model. On left is the feature space and on
right the internal state of the model.
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13.3 Large vocabulary decoder

The task of the decoder in a speech recognition system is to combine the probabilities and
rules given by all the model component to find a word sequence that matches best with
the given speech. In order to do this, the decoder should, in principle, consider all possible
word sequences, and score them using the acoustic and language models. However, because
the number of possible word sequences is extremely large even with small vocabularies,
the decoder must concentrate the search effort on the most promising words and prune
the improbable sequences in an early stage.

During the past two years, we have been actively developing a large vocabulary decoder
[1,2]. Instead of using whole words as recognition units, as traditional speech recognition
systems do, our decoder constructs words from smaller units, called morphs. This makes
it possible to recognize very large vocabularies with a reasonable number of units, which
is important in Finnish, especially. Because natural speech is continuous and does not
contain clear word boundaries, the decoder has to consider a possible word boundary after
every morph, and use language models to evaluate where the word boundaries are most
probable. The decoder puts the combined word sequences in stacks according to their
ending times, and only the best sequences are stored for each time instant. In this stack
decoding approach, complex language models can be used without hindering the acoustic
matching, but the dependence between acoustic models is harder to take into account.
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Figure 13.4: The stack decoder expands two hypotheses (bold green boxes) with three
acoustically promising most morphs (blue boxes).
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