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4.1 Bayesian modeling and ensemble learning

In unsupervised learning, the goal is to build a model which captures the statistical reg-
ularities in the observed data and provides a compact and meaningful representation for
the data. From such a representation it is often much easier to understand the basic
characteristics of the data than directly from the raw data.

Unsupervised learning methods are often based on a generative approach where the
goal is to find a specific model which explains how the observations were generated. It
is assumed that there exist certain source signals (also called factors, latent or hidden
variables, or hidden causes) which have generated the observed data through an unknown
mapping. The goal of generative learning is to identify both the source signals and the
unknown generative mapping.

The success of a specific model depends on how well it captures the structure of the
phenomena underlying the observations. Various linear models have been popular, be-
cause their mathematical treatment is fairly easy. However, in many realistic cases the
observations have been generated by a nonlinear process. Unsupervised learning of a good
nonlinear model is a challenging task, because it is typically computationally much more
demanding than for linear models, and the choice of an appropriate specific model is often
difficult.

In Bayesian data analysis and estimation methods, all the uncertain quantities are
modeled in terms of their joint probability density function (pdf). The key principle is to
construct the joint posterior pdf for all the unknown quantities in a model, given the data
sample. This posterior density contains all the relevant information on the parameters
to be estimated in parametric models, or the predictions in non-parametric prediction or
classification tasks [1].

Denote by H the particular model under consideration, and by θ the set of model
parameters that we wish to infer from a given data set X. The posterior probability
density p(θ|X,H) of the parameters given the data X and the model H can be computed
from the Bayes’ rule

p(θ|X,H) =
p(X|θ,H)p(θ|H)

p(X|H)
(4.1)

Here p(X|θ,H) is the likelihood of the parameters θ, p(θ|H) is the prior pdf of the pa-
rameters, and p(X|H) is a normalizing constant. The term H denotes all the assumptions
made in defining the model, such as choice of a multilayer perceptron (MLP) network,
specific noise model, etc.

The parameters θ of a particular model Hi are often estimated by seeking the peak
value of a probability distribution. The non-Bayesian maximum likelihood (ML) method
uses to this end the distribution p(X|θ,H) of the data, and the Bayesian maximum a
posteriori (MAP) method finds the parameter values that maximize the posterior distri-
bution p(θ|X,H). However, using point estimates provided by the ML or MAP methods
is often problematic, because the model order estimation and overfitting (choosing too
complicated a model for the given data) are severe problems [1].

Instead of searching for some point estimates, the correct Bayesian procedure is to
perform estimation by averaging over the posterior distribution p(θ|X,H). This means
that the estimates will be sensitive to regions where the probability mass is large instead of
being sensitive to high values of the pdf [4]. One can even make use of the complete set of
models by computing the predicted values as averages over the predictions given by several
models, weighted by their respective probabilities. Such a procedure appropriately solves
the issues related to the model complexity and choice of a specific model Hi among several
candidates. In practice, however, the differences between the probabilities of candidate
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models are often very large, and hence it is sufficient to select the most probable model
and use the estimates or predictions given by it.

A problem with fully Bayesian estimation is that the posterior distribution (4.1) has a
highly complicated form except for in the simplest problems. Therefore it is too difficult
to handle exactly, and some approximative method must be used. Ensemble learning,
also called variational Bayes, is a recently developed [2, 3] approximative fully Bayesian
method, which has become popular because of its good properties. It uses the Kullback-
Leibler (KL) information between two probability distributions q(v) and p(v). The KL
information is defined by the cost function

C(q ‖ p) =

∫
q(v) ln

q(v)

p(v)
dv (4.2)

which measures the difference in the probability mass between the densities q(v) and p(v).

A key idea in ensemble learning is to minimize the misfit between the actual poste-
rior pdf and its parametric approximation using the KL information. The approximating
density is often taken a diagonal multivariate Gaussian density, because the computa-
tions become then tractable. Even this crude approximation is adequate for finding the
region where the mass of the actual posterior density is concentrated. The mean values
of the Gaussian approximation provide reasonably good point estimates of the unknown
parameters, and the respective variances measure the reliability of these estimates.

A main motivation of using ensemble learning is that it avoids overfitting which would
be a difficult problem if ML or MAP estimates were used. Ensemble learning allows one
to select a model having appropriate complexity, making often possible to infer the correct
number of sources or latent variables. It has provided good estimation results in the very
difficult unsupervised (blind) learning problems that we have considered.

Ensemble learning is closely related to information theoretic approaches which mini-
mize the description length of the data, because the description length is defined to be
the minus logarithm of the probability. Minimal description length thus means maximal
probability. In the probabilistic framework, we try to find the sources or factors and the
nonlinear mapping which most probably correspond to the observed data. In the informa-
tion theoretic framework, this corresponds to finding the sources and the mapping that can
generate the observed data and have the minimum total complexity. Ensemble learning
has been discussed from information theoretic point of view in [2].

In the following subsections, we first consider the use of ensemble learning in nonlin-
ear principal component (factor) analysis as well as in nonlinear independent component
analysis. The static model used in nonlinear factor analysis is then extended to nonlinear
dynamic state-space models. In these problems, we have employed multilayer perceptron
networks as a flexible family of models. We then discuss construction of hierarchic models
from a set of basic blocks in context with ensemble learning, and present applications of
the developed Bayesian methods to inferring missing values from data, to detection of
changes in process states, and to analysis of biomedical MEG data.
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4.2 Nonlinear factor analysis and independent component

analysis

The linear principal and independent component analysis (PCA and ICA) model the
data as having been generated by independent sources through a linear mapping. The
difference between the two is that PCA restricts the distribution of the sources to be
Gaussian, whereas ICA does not, in general, restrict the distribution of the sources.

We have applied ensemble learning to nonlinear counterparts of PCA and ICA where
the generative mapping form sources to data is not restricted to be linear [1, 2, 3]. The
general form of the model is

x(t) = f(s(t)) + n(t) . (4.3)

This can be viewed as a model about how the observations were generated from the
sources. The vectors x(t) are observations at time t, s(t) are the sources and n(t) the
noise. The function f(·) is a parametrised mapping from source space to observation
space. We have used multi-layer perceptron (MLP) network with tanh-nonlinearities to
model the mapping f :

f(s) = B tanh(As + a) + b . (4.4)

The mapping f is thus parametrized by the matrices A and B and bias vectors a and
b. MLP networks are well suited for nonlinear PCA and ICA. First, they are universal
function approximators which means that any type of nonlinearity can be modeled by them
in principle. Second, it is easy to model smooth, close to linear mappings with them. This
makes it possible to learn high dimensional nonlinear representations in practice.

Traditionally MLP networks have been used for supervised learning where both the
inputs and the desired outputs are known. Here sources correspond to inputs and obser-
vations correspond to desired outputs. The sources are unknown and therefore learning is
unsupervised.

Usually the linear PCA and ICA models do not have an explicit noise term n(t) and
the model is thus simply x(t) = f(s(t)) = As(t) + a, where A is a mixing matrix and a is
a bias vector. The corresponding PCA and ICA models which include the noise term are
often called factor analysis and independent factor analysis (FA and IFA) models. The
nonlinear models discussed here can therefore also be called nonlinear factor analysis and
nonlinear independent factor analysis models.

Dimension reduction by nonlinear factor analysis

Just as their linear counterparts, the nonlinear versions of PCA and ICA can be used for
instance in dimension reduction and feature extraction. The difference between linear and
nonlinear PCA is depicted in Figure 4.1. In the linear PCA the data is described with a
linear coordinate system whereas in the nonlinear PCA the coordinate system is nonlinear.
The nonlinear PCA and ICA can be used for similar tasks as their linear counterparts,
but they can be expected to capture the structure of the data better if the data points lie
in a nonlinear manifold instead of a linear subspace.

Model order selection is an important issue is real applications: how many sources are
there, how complex nonlinearities should be used, etc. One benefit of ensemble learning is
that the cost function can be used for optimizing model structure by simply minimizing
the cost. A sample case is shown in Figure 4.2. The data was created by nonlinearly
mixing five Gaussian random sources. Ensemble learning is actually able to shut down
unused parts of the model. The weights of the MLP network corresponding to the extra
sources converge to zero which means that the extra sources are effectively pruned away
from the model. This explains why the cost function saturates after five sources.
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Figure 4.1: On the left hand side the data is described with a linear coordinate system.
On the right hand side the coordinate system is nonlinear
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Figure 4.2: The value of the cost function is shown as a function of the number of sources.
The MLP network had 30 hidden neurons. Ten different initialisations were tested to find
the minimum value for each number of sources. The cost function saturates after five
sources and the deviations are due to different random initialisation of the network

Nonlinear factor analysis is able to capture nonlinear structure in real data sets as can
be seen in Figure 4.3. This data set consists of 2480 samples from 30 time series measured
by different sensors from an industrial pulp process. An expert has preprocessed the signals
by roughly compensating for time lags of the process which originate from the finite speed
of pulp flow through the process. It appears that the data is quite nonlinear since the
nonlinear factor analysis is able to explain as much data with 10 components as the linear
factor analysis with 21 components.

Nonlinear independent factor analysis

Like in the linear case, Gaussian model for the sources results in rotational indeterminacy
of the source space, whereas a non-Gaussian model for the sources fixes the rotation and
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Figure 4.3: The graph shows the remaining energy in the process data as a function of the
number of extracted components in linear and nonlinear factor analysis
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Figure 4.4: Original sources are on the x-axis of each scatter plot and the sources estimated
by a linear ICA are on the y-axis. Signal to noise ratio is 0.7 dB

makes it possible to identify independent sources.

We have modeled the distribution of the sources by a mixture of Gaussian distribu-
tions. This density model is well suited for generative models and moreover, given enough
Gaussians in the mixture, any density can be modeled by arbitrary accuracy using it.

Figures 4.4 and 4.5 illustrate the difference between linear and nonlinear ICA in the
case where the mixing is nonlinear. The data set consisted of 1000 20-dimensional vectors
which were created by nonlinearly mixing eight non-Gaussian independent random sources.
Nonlinear model is clearly required in order to capture to underlying nonlinear manifold.
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Figure 4.5: Nonlinear independent factor analysis is able to retrieve the original signals
with small error. Signal to noise ratio is 17.3 dB
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4.3 Nonlinear dynamic state-space models

In many cases, measurements originate from a dynamic system and form time series.
In such cases, it is often useful to model the dynamics in addition to the instantaneous
observations. We have extended the nonlinear factor analysis model by adding a nonlinear
model for the dynamics of the sources s(t) [1, 2, 3]. This results in a state-space model
where the sources can be interpreted as the internal state of the underlying generative
process.

The model consists of the following set of equations:

x(t) = f(s(t)) + n(t) (4.5)

s(t) = g(s(t − 1)) + m(t) , (4.6)

where x(t) are the observations, s(t) are the sources (states), n(t) and m are Gaussian
observation and process noise and f(·) and g(·) are the nonlinear functions modeling the
observations and dynamics, respectively.

As in nonlinear factor analysis, the nonlinear functions are modeled by MLP networks.
The mapping f has the same functional form (4.4). Since the states in dynamical systems
are often slowly changing, the MLP network for mapping g models the change in the value
of the source:

g(s(t − 1)) = s(t − 1) + D tanh[Cs(t − 1) + c] + d . (4.7)

An important advantage of the proposed new method is its ability to learn a high-
dimensional latent source space. We have also reasonably solved computational and over-
fitting problems which have been major obstacles in developing this kind of unsupervised
methods thus far. Potential applications for our method include prediction and process
monitoring, control and identification. A process monitoring application is discussed in
Section 4.5 in more detail.
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4.4 Building blocks for ensemble learning

The methods for unsupervised learning of nonlinear latent variable models by ensemble
learning introduced in Sections 4.2 and 4.3 represent a significant improvement in existing
techniques in their ability to learn high-dimensional nonlinear representations of the data.
However, the ability to scale these methods is limited by computational complexity which
is roughly proportional to the number of data samples and the complexity of multiplying
the matrices A and B in (4.4).

In order to be able to work with very large scale models, the computational complexity
should be linear in the number of data samples and connections in the model. This can be
achieved by utilizing the methods introduced in [1]. The idea is to construct large models
from standardized building blocks which can be connected rather freely and can be learned
by ensemble learning with local learning rules. Each block only needs to communicate with
its neighbors which results in linear computational complexity.

The building blocks include continuous and discrete variables, summation, addition,
nonlinearity and switching. Ensemble learning provides a cost function which can be
used for updating the variables as well as optimising the model structure. The blocks are
designed to fit together and to yield efficient update rules.

We have started to design a C++ library which can utilize these building blocks. The
derivation of the cost function and learning rules is largely automatic which means that
the user only needs to define the connections between the blocks. This research will be
published in forthcoming papers.
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4.5 Applications

In this section, applications of nonlinear factor analysis (Section 4.2) and nonlinear state-
space models (Section 4.3) are discussed. Application of the nonlinear state-space model
to biomedical magnetoencephalographic data is discussed in Section 6.3.

Missing values

Generative models can usually easilly deal with missing observations. For instance in
self-organizing maps (SOM) the winning neuron can be found based on those observations
that are available. The generative model can also be used to fill in the missing values.
This way unsupervised learning can be used for a similar task as supervised learning as
illustrated in Figure 4.6. Both the inputs and desired outputs of the learning data are
treated equally. When a generative model for the combined data is learned, it can be used
to reconstruct the missing outputs for the test data. The scheme used in unsupervised
learning is more flexible because any part of the data can act as the cue which is used to
complete the rest of the data. In supervised learning, the inputs always act as the cue.

Training data data
Test

Supervised learning

Desired outputs

Data

Unsupervised learning with missing values

Missing values

Figure 4.6: Unsupervised learning can be used for supervised learning by considering the
outputs of the test data as missing values.

The quality of the reconstructions provides insight to the properties of different unsu-
pervised models. The ability of self-organizing maps, linear principal component analysis
and nonlinear factor analysis to reconstruct the missing values of various data sets have
been studied in [2].

Figure 4.7 shows the results of reconstructing missing values in speech spectra. On the
left, the reconstructed spectra are shown for a case where data were missing in patches
and the data is not permutated. This corresponds to the upper row of the plots on the
right. The other rows on the right show results for cases where the data was permutated
and/or data was missing randomly instead of in patches. In the permutated case the
learning data contained samples which were similar to the test data with missing values.
This task does not require generalization but rather memorization of the learned data.
SOM performs the best in this task because it has the largest amount of parameters in
the model.

The task where the data was missing randomly and not in patches of several neigh-
boring frequencies does not require a very nonlinear model but rather an accurate repre-
sentation of a high-dimensional latent space. Linear and nonlinear factor analysis perform
better than SOM whose parametrization is not well suited for very high-dimensional latent
spaces. The conclusion of these experiments was that in many respects the properties of
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Figure 4.7: Left: Speech data reconstruction example with best parameters of each algo-
rithm. Right: Mean square reconstruction errors of speech data as a function of number
of factors or softening width. Reading from up to down, on the first and third row the
values are missing in patches, and on the second and fourth, randomly. In the upper rows
the test data is new words and in the lower rows the data is permuted randomly. Upper
curve in each plot is the test result for missing values and lower is the reconstruction of
observed values.

nonlinear factor analysis are closer to linear factor analysis than highly nonlinear map-
pings such as SOM. Nonlinear factor analysis is nevertheless able to capture nonlinear
structure in the data and performed as well or better than linear factor analysis in all the
reconstruction tasks.

Detection of process state changes

One potential application for the nonlinear dynamic state-space model discussed in Sec-
tion 4.3 is process monitoring. In [1], ensemble learning was shown to be able to learn
a model which is capable of detecting an abrupt change in the underlying dynamics of a
fairly complex nonlinear process.

The process was artificially generated by nonlinearly mixing some of the states of three
independent dynamical systems: two independent Lorenz processes and one harmonic
oscillator. Figure 4.8 shows the observations on the left and the estimated underlying
states on the right.

The first 1000 samples of the observations were used to learn the nonlinear dynamical
system. The model was then fixed and applied to new observations. In the middle of
the new data set, at time 1500, the underlying dynamics of one of the Lorenz processes
abruptly changes. It is very difficult to detect this from the observed nonlinear mixtures
whereas the estimated sources clearly exhibit the change. The cost function used in ensem-
ble learning can readily be used for monitoring the change as can be seen in Figure 4.9. It
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Figure 4.8: Observations on the left and reconstructed sources on the right. The process
changes abruptly at time 1500 but this is visible only in the sources.
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Figure 4.9: The change in the process can be detected by monitoring the cost function.

was shown experimentally that the method outperforms several standard change detection
methods in this task [1].
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