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Abstract— This paper proposes a combination of methodolo-
gies based on a recent development —called Extreme Learning
Machine (ELM)- decreasing drastically the training time of
nonlinear models. Variable selection is beforehand performed
on the original dataset, using the Partial Least Squares (PLS)
and a projection based on Nonparametric Noise Estimation
(NNE), to ensure proper results by the ELM method. Then,
after the network is first created using the original ELM, the
selection of the most relevant nodes is performed by using
a Least Angle Regression (LARS) ranking of the nodes and
a Leave-One-Out estimation of the performances, leading to
an Optimally-Pruned ELM (OP-ELM). Finally, the prediction
accuracy of the global methodology is demonstrated using the
ESTSP 2008 Competition and Poland Electricity Load datasets.

I. INTRODUCTION

Ime series forecasting is a challenge in many fields.

In finance, experts forecast stock exchange courses or
stock market indices; data processing specialists forecast the
flow of information on their networks; producers of electric-
ity forecast the load of the following day. The common point
to their problems is the following: how can one analyse and
use the past to predict the future?

Many techniques exist for the approximation of the un-
derlying process of a time series: linear methods such as
ARX, ARMA, etc. [1], and nonlinear ones such as artificial
neural networks [2]. In general, these methods try to build
a model of the process. The model is then used on the last
values of the series to predict the future values. The common
difficulty to all the methods is the determination of sufficient
and necessary information for an accurate prediction.

A new challenge in the field of time series prediction
is the Long-Term Prediction: several steps ahead have to
be predicted. Long-Term Prediction has to face growing
uncertainties arising from various sources, for instance, ac-
cumulation of errors and the lack of information [2].

In this paper, we use a Direct prediction strategy to ensure
the accuracy of the prediction, even in long-term. The Direct
strategy does not suffer from the accumulation of errors as
does the Recursive one. On the other hand, the Direct strategy
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needs reliable variable selection and model training for every
prediction step.

In this paper, two projection methods, Partial Least
Squares (PLS) and Nonparametric Noise Estimation (NNE)
are used to create a set of inputs, which contain the relevant
information for the prediction purpose. The combination of
the methods project the high-dimensional input regressor
into low-dimensional latent space maximizing the prediction
ability of any nonlinear approximator.

The approximator used in this paper is a Feed-Forward
Neural Network. The reason why these type of networks
are not widely used in industry for data mining purposes,
is that they are very slow to train. This is due to the many
parameters to be properly tuned by slow (often gradient-
based) algorithms, in order to obtain a good enough model.
Furthermore, the training phase has to be repeated in order to
perform model structure selection, for example the selection
of the number of hidden neurons or the selection of some
regularization parameter.

In [3], Guang-Bin Huang et al. propose an original algo-
rithm for hidden nodes determination and weights selection
called Extreme Learning Machine (ELM). The main advan-
tage of this algorithm is in dividing the computational time
by hundreds and making the learning process of the neural
network rather simplistic. In this paper, a methodology based
on ELM, called OP-ELM (for Optimally-Pruned ELM) with
two main goals is proposed:

« being able to construct/select a nonlinear model in
computational times close to these of linear models,

« this while keeping roughly the same performances as
with the possibly best current algorithms.

For this purpose, we go through four main techniques,
integrated in the OP-ELM methodology as four necessary
steps, namely: variable selection [4], [5], [6], the mentioned
Extreme Learning Machine [3], Least Angle Regression
model selection [7] and finally a fast and exact estimation of
the Leave-One-Out validation error in the training process,
using PRESS statistics [8], [9].

In the next section, the two prediction strategies, Direct
and Recursive, are explained. In Section Il the global
methodology is summarized. The projection methods, PLS
and NNE, are more deeply explained in Section 1V and the
nonlinear approximator OP-ELM in Section V. Finally, Sec-
tion VI provides experimental results and conclusions based
on ESTSP 2007 Competition dataset and Poland Electricity
Load dataset.



Il1. TIME SERIES PREDICTION STRATEGIES

The time series prediction problem is the prediction of
future values based on the previous values and the current
value of the time series (see Equation 1). The previous values
and the current value of the time series are used as inputs
for the prediction model. One-step ahead prediction is needed
in general and is referred to as Short-Term Prediction. But
when multi-step ahead predictions are needed, it is called a
Long-Term Prediction problem.

Unlike the Short-Term time series prediction, the Long-
Term Prediction is typically faced with growing uncertainties
arising from various sources. For instance, the accumulation
of errors and the lack of information make the prediction
more difficult. In Long-Term Prediction, performing multiple
step ahead prediction, there are several alternatives to build
models. In the following sections, two variants of prediction
strategies are introduced and compared: the Direct and the
Recursive Prediction Strategies.

A. Recursive Prediction Strategy

To predict several steps ahead values of a time series,
Recursive Strategy seems to be the most intuitive and simple
method. It uses the predicted values as known data to predict
the next ones. In more detail, the model can be constructed
by first making one-step ahead prediction:

Uer1 = F1(Yes Ye—1, s Ye—ni41), 1)

where M denotes the number input variables. The re-
gressor of the model is defined as the vector of inputs:
Yt Yt—1, - Ys—p+1- It IS possible to use also exogenous
variables as inputs in the regressor, but they are not con-
sidered here in order to simplify the notation. Nevertheless,
the presented global methodology can also be used with
exogenous variables.
To predict the next value, the same model is used:

Utv2 = f1(De41, Y, Ye—10 s Yt M 42)- (2)

In Equation 2, the predicted value of ¢, is used instead
of the true value, which is unknown. Then, for the H-steps
ahead prediction, ¢, o to ;4 are predicted iteratively. So,
when the regressor length M is larger than H, there are
M — H real data in the regressor to predict the H'" step.
But when H exceeds M, all the inputs are the predicted
values. The use of the predicted values as input variables
deteriorate the accuracy of the prediction.

B. Direct Prediction Strategy

Another strategy for the Long-Term Prediction is the
Direct Strategy. For the H-steps ahead prediction, the model
is

Uerh = fo(Ye, Ye—1s o, Ye—nr41) With 1 <h < H. (3)

This strategy estimates H direct models between the
regressor (which does not contain any predicted values) and

the H outputs. The errors in the predicted values are not
accumulated in the next prediction. When all the values, from
Jt+1 10 gy pr, Need to be predicted, H different models must
be built. The direct strategy increases the complexity of the
prediction, but is shown to be more accurate in the long-term
[10].

I1l. GLOBAL METHODOLOGY
Figure 1 summarizes the methodology used in this paper.
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Fig. 1. Global methodology summarized.

The input variable projection consists of a combination of
two projection methods: Partial Least Squares (PLS) and a
projection method based on Nonparametric Noise Estimation
(NNE). The projection methods are explained in the Sections
IV-A and IV-C.

The nonlinear approximator used is an Optimally-Pruned
Extreme Learning Machine (OP-ELM). This approximator
is a Feed-Forward Neural Network with a random selection
of weights as its training. The network is combined with
Least-Angle Regression (LARS) and Leave-one-out (LOO),
which rank the outputs of the randomly initialized neurons
and validate the optimal selection of them, respectively.

IV. PROJECTION METHODS

This section briefly overviews the projection methods and
related tools used in this paper. The methods are the Partial
Least Squares (PLS), the Delta Test (DT) for Nonlinear
Noise Estimation (NNE) and the the Extended Forward-
Backward variable selection method (EFB). The projection
methodology is summarized in Figure 2 and in Table I.

Original Regressor

of Inputs Projected
l Regressor
PLS DT using EFB

Linear projection
to latent space

Projection to
low-dimensional space

Fig. 2. Projection methodology summarized.

A. Partial Least Squares

The Forward-Backward selection has been previously
tested in order to optimize a projection matrix when the
criterion is the minimization of the Delta Test. Unfortunately,
the method is converging and the results are satisfactory only
if the number of variables is small.



TABLE |
PROJECTION METHODOLOGY SUMMARIZED.

1) Build a PLS-R model between the inputs and the output. For a
model cross-validated for kq latent directions retain as many as
2k1

2) Project the data x onto the space spanned by the first 2k; PLS-R
directions

z1 = xPj. O]
Here, P; denotes the the projection matrix associated to PLS-R

3) Perform EFB in order to find a second projection matrix P2 such
that the DT between the final set of latent inputs and the output is
minimized

1N
Py = min — N =il 5
2 = min 2N;HyNN(zM) il ®)

4) Project z; onto the space spanned by the directions optimized with
DT

zo = z1Ps. (6)

In order to approach such a restriction, we suggest to use
the PLS as a preprocessing step; thus, allowing a preliminary
reduction in the dimensionality of the original problem. The
number of latent variables to be retained after performing the
PLS should be a compromise capable of conserving most of
the information exploitable by a nonlinear method, but also
small enough in order to be able to perform the minimization
of the Delta Test. Notice that the number of variables retained
from the PLS is, however, not critical when the choice is
conservative; in our experiments, we found that retaining
roughly twice the number of latent variables obtained from
a cross-validated PLS is typically appropriate.

The linearly projected data zo = xP Py = xP are then
used to calibrate any nonlinear model to estimating the output

Y.

B. Nonparametric Noise Estimation with the Delta Test

Delta Test (DT) is a technique for estimating the variance
of the noise or, equivalently, the Mean Square Error (MSE),
that can be achieved by a regression model without over-
fitting; see [11] and references therein. As such, the DT is
useful for evaluating the nonlinear correlation between two
random variables and can be included in variable selection
schemes: the set of inputs minimizing the DT is the one that
is to be retained.

Given N input-output pairs: (x;,v;) € R? x R, the
relationship between x; and y; is modeled as y; = f(x;)+r;
where f is the unknown function to be estimated and ; is the
noise. The Delta Test is a data-derived method for estimating
the variance of the noise in such a setting. Denoting by
XNN(x,) the first nearest neighbor of point x; in the set
{x;}X, and ynn(x,) the associated output, the Delta Test,
0, formulates as:

N
1
6= ﬁZlHyNN(x,;) _yiH2- (7
C. Projection based on the Delta Test

Linear projection is a common preprocessing step in both
function approximation and classification tasks. When regres-
sion is to be performed, the aforementioned PLS, as well as
other methods like Principal Components Regression (PCR),
are standard approaches based on the idea of combining
the original variables by projection. The methods project
the original input variables onto a latent space with reduced
dimensionality; in PCR, the projection is constructed in order
to keep a maximum of information from the input variables,
whereas PLS builds new inputs that are also suitable to
approximate the output, [12].

This subsection illustrate an efficient strategy to use the
Delta Test as a tool to select an optimal linear projection of
the input variables. Being based on the DT, the strategy is
mostly suitable when a nonlinear model is used to reconstruct
the relationship between the new latent inputs and the output.

For NV input-output pairs, (x,y) € R? x R, a new set of
inputs z is given as:

z = xP, (8)

where P is the projection matrix. According to Delta Test,
the best set of latent variables z is found as the one that
minimizes:

N
1
0= ﬁg\ywzi) —uill’, (©)

where ynn(z,) IS now the output for zyp(,,). Thus, we
define an optimal P as:

N
O 1 1
port :HEHWZHZ/NN(ZI') — yil%, (10)
=1

Unfortunately, the optimization for PPt is difficult be-
cause the Delta Test is not differentiable with respect to P;
the discontinuity is due to the fact that the Delta Test esti-
mates the variance of the noise based on nearest neighbors.

In order to optimize for PP, an Extended Forward-
Backward optimization technique can be used.

The Forward-Backward Selection (FB) is a commonly
used strategy for variable selection. The method is fast but
there is no guarantee that the optimal set of variables is found
[13]. In FB, each variable can be in two states: ”1”, meaning
that it belongs to the set of selected variables or 0 meaning
that it does not and it is temporarily discarded. Given a
certain initial state for all variables, the procedure flips the
state of each variable at a time and computes a predefined
criterion (for example, the Delta Test). The flipping operation
that improves performances the most is accepted, and the
states are flipped again (excluding the previously accepted
change). The process is continued until no improvement is
found.



The FB can be extended to any optimization problem for
which the importance (or level) of a variable is searched; that
is, instead of switching scalars from 0 to 1 or vice versa, by
increasing (in case of forward selection) or decreasing (for
backward selection) by regular steps 1/h from 0 to 1. In
this study, we suggest an application of Extended FB (EFB)
schemes to the problem of optimizing the projection matrix
P.

In general, we assume that the initial variables have been
normalized and that the values of P can be bounded by —1
and 1. In practice, a degree of discretization » = 10 is found
to be accurate enough and that leaves us 21 possible values
for each variable. For a projection onto a 2-dimensional
space, the procedure can be summarized as:

1) initialize the first column of P

2) optimize the first column of P by EFB and DT in the
projected space

3) initialize the second column of P

4) optimize the second column of P by FBS with the first
column unchanged

The data projected onto a bi-dimensional latent space are
easily displayed and initially used to investigate their struc-
ture in the input space, being the visualization supervised by
the output. If the visualization is not the main concern, the
procedure can be extended to additional columns of P (e.g.,
until no significant decrease of the Delta Test is observed)
and then used to estimate the output.

V. OP-ELM
Figure 3 sums up the four main steps of OP-ELM [14].

Data

Model

Variable

Selection
Create MLP Selection of
using ELM Neurons by LOO

\ Ranking of J\
Dl Neurons by LARS
Fig. 3. The four steps of the proposed OP-ELM

A. Variable selection

An a priori variable selection has to be performed on the
data set in order to remove the possibly irrelevant variables
(not necessarily the redundant ones), for the problem.

Generally, the variable selection can be achieved by any
well-known technique. Since computational speed is the
main advantage of OP-ELM, fast methods, such as Forward
Selection [4], is one of the most recommended ones; more
elaborated techniques for selection using Markov blanket [5],
typical mutual information [4] or a combination of mutual
information with Forward selection and other sampling meth-
ods as proposed in [6] can also be used, at the possible
penalty of a longer computational time for this step.

In this paper, the variable selection is actually performed
by variable projection, which creates new input variables
from the original inputs. The projection methods described
in Section IV are fast and fit well with the nonlinear
approximation technique of the OP-ELM.

B. Extreme Learning Machine (ELM)

Once the dataset has been pruned of its irrelevant variables,
the actual feed-forward neural network is built, with only one
hidden layer as proposed in the ELM algorithm. This algo-
rithm has been presented by Guang-Bin Huang et al. in [3],
although a common idea existed already in [15]. In ELM,
traditional multilayer perceptrons with one hidden layer is
used. The weight between the input data and the hidden-
layer are denoted w;. The weights between the hidden-layer
and the output are denoted b. The activation functions used
are sigmoids in the hidden-layer and a linear function for
the output layer. The novelty is in the determination of the
input weights w;, which are randomly determined from a
uniformly distributed distribution (for example between -10
and 10). Indeed, with this done and following the mandatory
hypothesis that the activation functions f of the hidden layer
are indefinitely differentiable in any interval of their domain,
the output weights b can be simply calculated from the
hidden layer output matrix H. Each column of H is given
by the product of the weight vector and the input vectors:
h; = sigmoid(x;7w;). The output weights are calculated
by b = Hfy, where H stands for the Moore-Penrose
inverse [16] and y = (y1,...,yar)T is the output. The choice
of the number of neurons N to be used in the hidden layer
remains the only arbitrary parameter; since the next step of
the methodology is meant to prune the unuseful neurons
of the hidden layer, it is wise to have sufficient number of
neurons for the ELM part.

C. Least Angle Regression (LARS)

The LARS algorithm was proposed by Efron et al. in [7]
and implemented in [17]. The basic underlying idea of this
selection algorithm, is following the Forward selection one:

1) Select predictor «;, giving best results alone

2) The second, z;,, is selected by looking for the best z,
along z;,

3) Third, x;,, searched for in equiangular direction be-
tween z;, and z;,

4) All remaining are searched for in the equiangular
direction between all selected predictors

5) In the end, a ranking of the predictors is obtained.

In the case of our neural network built in the previous
stage of the methodology, we are going to rank the hidden
layer neurons by the LARS algorithm. Since the part between
the hidden and the output layer of the neural network is
linear, LARS is guaranteed to find the best possible ranking
of predictors.

Finally, the selection of the final model structure is
achieved through Leave-One-Out validation in the last step
of the methodology.



D. Leave-One-Out (LOO)

For the estimation of the validation error and the actual
selection of the best neurons for the problem, a Leave-One-
Out is used.

Calculating the LOO error e can be very time consuming
when datasets tend to have a large number of samples. Fortu-
nately, the PRESS (or PREdiction Sum of Squares) statistics
provide a direct and exact formula for the calculation of the
LOO error for linear models (see [8], [9] for details on this
formula and implementations):

pRESS _ Yi — Xib

‘ -1 —x;Px)’ (1)
where P is defined as P =
{Xl, . ,X]u}.

Finally, evaluating the LOO error versus the number of
neurons used (which have been previously properly ranked
by the LARS algorithm) enables to select the best model for
the problem, that is, with a low enough number of neurons
to avoid over-fitting, but still large enough to ensure proper
generalization.

(X’X)"t and X =

E. Toy Example

This toy example shows the application of the OP-ELM
method to a sum of two sines. A set of 1000 training points
are generated, which gives a one-dimensional example where
no feature selection has to be performed beforehand. Figure
4 plots the obtained model on top of the training data.

For the test, a set of 10 000 samples is used to check the
validity of the selected model.

Sum of Two Sines

-0.8 -06 -04 -0.2 0 02 04 06 08

Fig. 4. Plot of a one-dimensional sum of two sines. The data is shown as
crosses and the model obtained by OP-ELM using circles.

The model seems to approximate the data very nicely, and
using a number of neurons around 20, one reaches an error
already equal to the noise introduced in the dataset (0.0625)
as can be seen on Figure 5.

V1. EXPERIMENTS

In this section the global methodology is applied to ESTSP
2007 Competition dataset and to the Poland Electricity Load
dataset.

0.12j b

Error

0.08f 1

0'0615 20 25

Number of Neurons

Fig. 5. Mean Square Error shown as dotted line, the Leave-One-Out error
as solid line and the Test error as dashed line.

A. ESTSP 2007 Competition Dataset

This time series prediction benchmark includes a total of
875 values from an unknown origin. The dataset is shown in
Figure 6. More information and the dataset can be found from
the ESTSP 2007 conference website and the proceedings
[18], [19].
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Fig. 6. ESTSP 2007 Competition dataset.

The presented methodology is applied to the dataset.
Original size of the regressor is selected to be 55 [19], which
means that we have originally samples in 55-dimensional
space. Then, the PLS is used to decrease the dimension to 7
and finally, the DT decreases the dimension to maximum of
6 dimensions. The selections of the regressor sizes is based
on earlier experience and several test runs with the projection
methods.

The projection is done for each prediction time step from
1 to 50, as described by the prediction. The result from the
Delta Test is shown in Figure 7 using Equation 9.

Value of Deltatest

0.5 J

5 10 15 20 25 30 35 40 45 50
Time

Fig. 7. ESTSP Competition dataset, noise approximation by the Delta Test
with respect to prediction steps.

From Figure 7, we can see, as expected, that the Delta Test



approximation of noise increases the further we go into the
future with our prediction. But at a certain point, the value
levels out and does not increase significantly.

The methodology is repeated 100 times using a Monte-
Carlo scheme. The average is used to compute the final
prediction and confidence interval is calculated using a sum
of the mean and the standard deviation multiplied by +1.96,
in order to get a 95 percent confidence interval. In Figure 8,
the final prediction of the ESTSP dataset is shown and the
confidence interval is shown in Figure 9.
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Fig. 8. ESTSP Competition dataset, prediction of 50 values. Solid line

represents the real value and the dashed one the prediction.

Figure 8 shows that the prediction is good in terms of
visual inspection. For 15 steps ahead, the Mean Square
Error (MSE) is 0.206 and for 50 steps ahead 0.686. The
prediction performances are the 6! and the 2"¢ places,
respectively, according to the results of the ESTSP 2007
prediction competition [20].
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Fig. 9. Confidence intervals of 50 predicted values. The solid line represents
the real value and the dashed lines the confidence intervals.

From Figure 9, we can see that the confidence interval
is almost everywhere containing the real value. Only a few
places are outside the bounds, mainly in the place of furthest
prediction horizon.

B. Poland Electricity Load Dataset

The dataset is called Poland Electricity Load and it repre-
sents two periods of the daily electricity load of Poland dur-
ing around 1500 days in the 90’s [21]. The quasi-sinusoidal
seasonal variation is clearly visible from the dataset.

The first part, 1400 values, is used for training and the
first 30 values of the second part for testing. The learning
part of the dataset is shown in Figure 10.

We follow the same procedure than in previous experi-
ment, but this time the original input regressor size is selected

Electric Load
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Fig. 10. Learning set of the Poland Electricity Load dataset.

to be 15 [10]. The PLS is still projecting to 7 latent variables
and after that the DT maximum to 6 dimensions. In Figure
11, the final prediction of the Poland Electricity Load dataset
is shown and the confidence intervals is shown in Figure 12.

Electric Load

Time
Fig. 11. Poland Electricity Load, 15 predicted values of the test set. Solid

line represents the real value and the dashed one the prediction.

From Figure 11, we can see again that the prediction
accuracy is very good. For 15 steps ahead, the test MSE
is 0.0004.
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Fig. 12. Confidence intervals of 15 predicted values of the test set. The solid
line represents the real value and the dashed lines the confidence intervals.

The confidence interval is not as consistent with this
dataset than with the ESTSP Competition one. Still the
prediction accuracy is good, even more measurements are
outside the bounds.

VIlI. CONCLUSIONS

The proposed methodology of sophisticated variable pro-
jection combined with the OP-ELM, based on the Extreme
Learning Machine, performs better than the original version
of ELM. Big part of the performance improvement comes
from the variable projection that provides suitable input for
the OP-ELM method.



The calculation time of the whole methodology is sur-
prisingly fast, only a couple of minutes for each prediction.
Starting from the PLS projection and ending to the selection
of neurons based on the combination of LARS and LOO,
each part is very fast and, as the results demonstrate, provide
accurate results. Furthermore, the low computational load
enables the researcher to compute very long-term predictions
using the Direct prediction strategy.

For further work, the proposed methodology is applied to
other datasets and obtained performances are compared to the
existing ones. Improvements to the projection and selection
techniques are also researched.

REFERENCES

[1] L. Ljung, System identification theory for User. Prentice-Hall,
Englewood CliPs, NJ, 1987.

[2] A. Weigend and N. Gershenfeld, Times Series Prediction: Forecasting
the Future and Understanding the Past. Addison-Wesley Publishing
Company, 1994.

[3] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489-
501, December 2006.

[4] F. Rossi, A. Lendasse, D. Frangois, V. Wertz, and M. Verleysen,
“Mutual information for the selection of relevant variables in spectro-
metric nonlinear modelling,” Chemometrics and Intelligent Laboratory
Systems, vol. 80, pp. 215-226, 2006.

[5] L. J. Herrera, H. Pomares, I. Rojas, M. Verleysen, and A. Guilén,
“Effective input variable selection for function approximation,” in Ar-
tificial Neural Networks: ICANN 2006, ser. Lecture Notes in Computer
Science, S. B. . Heidelberg, Ed., vol. 4131/2006, 2006, pp. 41-50.

[6] D. Francois, F. Rossi, V. Wertz, and M. Verleysen, “Resampling
methods for parameter-free and robust feature selection with mutual
information,” Neurocomput., vol. 70, no. 7-9, pp. 1276-1288, 2007.

[71
(8]
[9]

[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]
[21]

B. Efron, T. Hastie, |. Johnstone, and R. Tibshirani, “Least angle
regression,” in Annals of Statistics, 2004, vol. 32, no. 2, pp. 407-499.
R. H. Myers, Classical and Modern Regression with Applications, 2nd
edition. Pacific Grove, CA, USA: Duxbury, 1990.

G. Bontempi, M. Birattari, and H. Bersini, “Recursive lazy learning for
modeling and control,” in European Conference on Machine Learning,
1998, pp. 292-303.

A. Sorjamaa, J. Hao, N. Reyhani, Y. Ji, and A. Lendasse, “Methodol-
ogy for long-term prediction of time series,” Neurocomputing, vol. 70,
no. 16-18, pp. 2861-2869, October 2007.

A. Jones, “New tools in non-linear modeling and prediction,” Compu-
tational Management Science, vol. 1, pp. 109-149, 2004.

H. Wold, “Partial least squares,” in Encyclopedia of Satistical Sci-
ences. New York: Wiley, 1985, vol. 6, pp. 581-591.

S. Haykin, Neural Networks - A Comprehensive Foundation, 2nd
edition. Upper Saddle River, New Jersey 07458: Prentice Hall, 1999.
Y. Miche, P. Bas, C. Jutten, O. Simula, and A. Lendasse, “A method-
ology for building regression models using extreme learning machine:
Op-elm.” Accepted for publication in ESANN 2008 conference, 2008.
W. T. Miller, F. H. Glanz, and L. G. Kraft, “Cmac: An associative
neural network alternative to backpropagation,” in Proceedings of the
|EEE, October 1990, vol. 70, no. 10, pp. 1561-1567.

C. R. Rao and S. K. Mitra, Generalized Inverse of Matrices and Its
Applications. John Wiley & Sons Inc, January 1972.

T. Simild and J. Tikka, “Multiresponse sparse regression with appli-
cation to multidimensional scaling,” in Lecture Notes in Computer
Science, vol. 3697.  International Conference on Artificial Neural
Networks (ICANN), Warsaw, Poland, September 11-15, 2005, pp. 97—
102.

ESTSP2007 Conference: http://www.estsp.org.

A. Lendasse, Ed., Proceedings of ESTSP 2007. P.O. Box 5400,
02015 HUT, Finland: Helsinki University of Technology, Laboratory
of Computer and Information Science, ISBN: 978-951-22-8601-0,
2007.

Http://www.cis.hut.fi/projects/tsp/ESTSP.
Http://www.cis.hut.fi/projects/tsp/?page=Timeseries.



