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Abstract. In this paper, the problem of residual variance estimation is examined.
The problem is analyzed in a general setting which covers non-additive heteroscedas-
tic noise under non-iid sampling. To address the estimation problem, we suggest a
method based on nearest neighbor graphs and we discuss its convergence properties.
The universality of the estimator makes it an ideal tool in problems with only little
prior knowledge available.
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1. Introduction

The problem of residual variance estimation consists of estimating the
minimum mean squared generalization error obtainable by a nonlinear
model [2, 12]. The residual variance is a natural measure of relevance in
the context of data-derived modeling and can be profitably exploited
in common tasks like input and model structure selection for neural
networks as shown in [8]. In many cases, it offers a viable alternative
to information theoretic measures of dependency.

The problem originates from statistics, where it is often called noise
variance estimation [19, 4, 7, 13]. Many studies on the topic analyze
the additive and homoscedastic noise case under the independent iden-
tically distributed (iid) sampling assumption, or fixed (equispaced or
univariate) design setting. For example, statistically efficient difference-
based methods are derived in [15, 6] and kernel-based estimators in [7].
From the general data analysis point of view, however, the multivariate
random covariates setting is more interesting and challenging; in fact,
while kernel-based estimators have straightforward extensions [6, 13],
difference-based methods do not have clear counterparts in the random
multivariate design case. One possible generalization is discussed, for
instance, in [19], where local linear regression is used to derive an
estimator that is unbiased for linear problems.

Despite the usefulness of noise variance estimators in supervised
learning and relevance estimation, there has been less research on the
topic in machine learning. Previous work using near neighbor statistics
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includes [4, 12], whereas the differogram is used in [14]. Applications
of these estimators include model selection for support vector ma-
chines and multilayer neural networks [8, 14, 11] and input selection
[8]. However, again the forementioned estimators are analyzed assuming
noise with constant variance, which is a strong assumption taking into
account that small amount of prior knowledge is often available.

Thus, an important step is to examine the case of heteroscedastic
noise, which means that the noise variance is a function of the covari-
ates. The one-dimensional case has been examined, for example, in [1],
but much less effort has been devoted to examine the multivariate case.
Methods based on the use of local linear regression have been developed
and analyzed in [20, 17, 9]; however, all of these methods contain free
parameters, which are not always easy to estimate.

Instead of estimating the whole variance function, we concentrate
on estimating its expectation over the sample space in a general non-
iid setting. This alternative approach is thoroughly investigated in [2],
where a modified nearest neighbor graph combined with a locally con-
stant estimator is used to generalize the nonparametric first nearest
neighbor noise variance estimator to the heteroscedastic noise case. One
interesting fact is that the convergence properties of the estimator are
independent of the smoothness of the variance function, which allows
general convergence properties while, at the same time, not assuming
additive noise.

Stemming from such a recognition, we suggest an alternative estima-
tor also based on the use of nearest neighbor graphs but characterized
by a slight but important modification that allows a simpler formulation
but similar convergence properties. The method is fully nonparametric
with no free parameters. The convergence is proven using a similar
technique as that developed in [12] which leads to different proofs than
those in [2]. We also conjecture that in practice the speed of convergence
is expected to be faster than our theoretical worst-case bound.

In the first two sections of this paper, the problem of residual vari-
ance estimation is formalized (Section 2), the concept of nearest neigh-
bors is briefly overviewed and a theoretical upper bound is derived
(Section 3). In Sections 4 and 5, we introduce the nonparametric resid-
ual variance estimator and a convergence result is proven. In order to
support the presentation and demonstrate the properties of the esti-
mator in practice, the results on numerical experiments are illustrated
in Section 6.
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2. Residual Variance Estimation

By residual variance estimation, we mean estimating the lowest possible
mean squared generalization error in a given regression problem based
on given data. Our approach is mainly intended for data-derived mod-
eling using stationary models and is a generalization of the formulation
discussed in [4].

Before stating the general form of the problem, we provide some
general definitions that are needed in the subsequent treatment.

Our starting point is standard: let us assume that (Ω,F ,P) is a
probability space with the σ-algebra F of events and the probability
measure P. The random vectors (Zi)

∞
i=1 = (Xi, Yi)

∞
i=1 are indepen-

dently distributed taking values in the product space X × R, where
(X, ρ) is a metric space with the distance ρ.

The joint distribution is given by the joint density pi(x, y) (w.r.t.
a dominating measure λ). The scalar variables (Yi) model the output
of a system, whereas (Xi) describe the input; in practice, only a finite
sample (Xi, Yi)

M
i=1 is available and the number of samples M is the

critical quantity when performing any statistical inference. Justified
by the fact that, in practice, most random variables are bounded, we
assume that supx,y∈X ρ(x, y) ≤ 1.

2.1. Problem Statement

Without assuming an additive noise model and independent identically
distributed input, we state the problem of residual variance estimation
in the general case of independent observations from the point of view
of regression. In regression, the goal is to build a model between the
variables (Xi) and (Yi) given a finite sample (Xi, Yi)

M
i=1; this can be

done in diverse ways including linear models and neural networks.
The model is chosen by minimizing a cost function, typically, the

MSE between the model and the outputs. In this case, the problem
reduces at estimating the function g : X → R that minimizes the
expectation

LM (g) =
1

M

M∑
i=1

E[(Yi − g(Xi))
2], (1)

even though, in practice, the expectations usually have to be estimated
by averaging over the samples available and it is necessary to restrict
the complexity of the function g to avoid overfitting.

The estimation of the residual variance is the inverse of this problem:
the goal is to find the minimum value that the cost LM can achieve on
the set of bounded measurable functions. Denoting the set of bounded
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and measurable functions on X by B(X), formally, the problem consists
of computing

VM = inf
g∈B(X)

LM (g). (2)

The value VM is the variance of the residual and it describes the mag-
nitude of the part of the output that remains unexplained with the
theoretically optimal model. From the data-derived modelling point of
view, the quantity VM is the best possible generalization error one can
achieve using a learning machine.

The following proposition characterizes the theoretically optimal
solution of the regression problem.

THEOREM 1. The function that minimizes the cost (1) is given by

m(x) =
M∑
i=1

pi(x)E[Yi|Xi = x]∑M
i=1 pi(x)

. (3)

If the stationarity condition E[Yi|Xi = x] = E[Yj |Xj = x] holds for all
i, j > 0, then m(x) = E[Yi|Xi = x] for any i > 0.

Proof. Define the density function q(x, y) = M−1 ∑M
i=1 pi(x, y) and

assume that the random variable (X̃, Ỹ ) is distributed according to q.
Then, it can be seen that LM (g) = E[(Ỹ − g(X̃))2], which implies that
the optimal function m is given by m(x) = E[Ỹ |X̃ = x] as it is a well-
known fact that the conditional expectation gives the optimal function
in the sense of L2-norm [18]. Hence, starting from the definition of
abstract conditional expectations [18], it is possible to show that g is
of the form defined in (3).

3. Nearest Neighbors

The concept of nearest neighbors (see for example [4]) has found its
applications in various fields including non-parametric regression and
classification. Our goal is to use nearest neighbors based estimators
to approximatively solve the problem of residual variance estimation
presented above.

3.1. Basic Definition

The definition of the nearest neighbor is based on the use of a proximity
measure to determine similarity between points.
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The nearest neighbor of a point is

N [i, 1] = argmin1≤j≤M,j 6=iρ(Xi, Xj). (4)

Possible ties are solved by taking the minimal index. The k-th nearest
neighbor is defined recursively as

N [i, k] = argmin1≤j≤M,j 6=i,N [i,1],...,N [i,k−1]ρ(Xi, Xj), (5)

that is, the closest point after removal of the preceeding neighbors. The
corresponding distances are defined as di,k,M = ρ(Xi, XN [i,k]).

We also set

δM,k,α =
1

M

M∑
i=1

dα
i,k,M (6)

which is the empirical α-moment for the distances to the k-th nearest
neighbor.

3.2. Moment Bound Under a Dimensionality Constraint

In [12], we show that under the assumption X = R
n, the quantity

Mα/nδM,α,k is bounded by a universal constant for α ≤ n. This result
is very useful, as it holds for all points sets and is, thus, of deterministic
nature. In this section, we show that a corresponding result holds in a
more general context.

To proceed, a constraint on the dimensionality of the metric space
(X, ρ) is required. There exists many possible definitions for the dimen-
sionality of a fractal or metric space including the Hausdorff dimension,
capacity dimension and correlation dimension [5]. In this work, we will
instead use the concept of packing numbers [10], which is related to the
study of nearest neighbors as it is able to give an upper bound for the
empirical moments. It is worthwhile noticing that it remains largely
an open question how other definitions of dimension are related to the
average distance of the nearest neighbors; even though, it seems that,
for example, the Hausdorff dimension is too weak a concept to provide
geometric upper bounds.

A set A ⊂ X is an ǫ-packing, if for every distinct points x, y ∈ A,
ρ(x, y) > ǫ. For ǫ > 0, we define the packing numbers as the cardinality
of the maximal packing, that is:

N(ǫ) = sup
A is an ǫ-packing

|A|. (7)

Note that if X = R
n then N(ǫ) ∼ ǫ−n. However, the situation where

X is a low dimensional manifold in a high dimensional space is also
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common, in such a case the dimensionality of the metric space X is
smaller than that of the space in which it is embedded.

The next proposition is slightly weaker than the one in [12] in terms
of an additional logaritmic factor due to the weaker assumption made
about the space X. The bound will be used in the analysis of the bias
of our residual variance estimator. See [10] for corresponding results in
the context of classification.

THEOREM 2. Assume that for some constants Cn, n > 0, N(ǫ) ≤
Cnǫ−n when 0 < ǫ < 1.

Then, for 0 < α < n and M ≥ kCn,

δM,k,α ≤
n

n − α
kα/nCα/n

n M−α/n −
αkCnM−1

n − α
. (8)

For α = n, we have the bound

δM,k,n ≤ kCnM−1(1 + log(
M

kCn
)). (9)

Proof. Choose arbitrarily t > 0 and 0 < α ≤ n and define the set of
indices

It = {i : di,k,M > t}. (10)

Choose i1 ∈ It and define the set It,1 = It \ {N [i1, 1], . . . , N [i1, k −
1]}. Then pick up i2 6= i1 (i2 ∈ It,1) and set It,2 = {i1} ∪ It,1 \
{N [i2, 1], . . . , N [i2, k − 1]}. Correspondingly,

It,3 = {i1, i2} ∪ It,2 \ {N [i3, 1], . . . , N [i3, k − 1]} (11)

with i3 6= i1, i2. By repeating the forementioned procedure as long as
possible, we construct the sets {It,j}

L
j=1 for some L ≥ |It|/k. Notice

that by construction each index in the sequence (ij)
L
j=1 is in It,L. Thus,

in each iteration, a point is chosen from the active set and its nearest
neighbors are removed up to the index k − 1 (excluding the previously
chosen points). Then, this chosen point is added to the set (ij).

Choose now i, j ∈ It,L with i 6= j and notice that from the properties
of It,L it follows that ρ(Xi, Xj) ≥ t and |It,L| ≤ N(t), consequently. On
the other hand, It,L contains by construction exactly L points which
implies that the cardinality |It|, is bounded by

|It| ≤ kL ≤ kN(t) ≤ kCnt−n. (12)

Under the assumption that M ≥ kCn, we have (see [16], theorem
8.16):

δM,k,α =

∫ 1

0
αtα−1M−1|It|dt ≤

∫ 1

0
α min (kCnt−nM−1, 1)tα−1dt
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= kα/nCα/n
n M−α/n +

∫ 1

M−1/nk1/nC
1/n
n

αkCnM−1tα−1−ndt

=
n

n − α
kα/nCα/n

n M−α/n +
αkCnM−1

α − n
. (13)

In the case that α = n and M ≥ kCn, we have:

δM,k,n ≤ kCnM−1 +

∫ 1

M−1/nk1/nC
1/n
n

nkCnM−1t−1dt

= kCnM−1(1 + log(
M

kCn
)). (14)

4. Nonparametric Residual Variance Estimation

The concept of local continuity can be exploited to derive a nonpara-
metric nearest neighbor estimator of residual variance.

Denoting by VM the minimum of the cost in (3), a reasonable non-
parametric estimator would be [2]:

VM ≈
1

2M

M∑
i=1

(YN [i,1] − Yi)
2. (15)

Analysis about this methods can be found for example in [12, 4], where
it has been shown that the estimator has good properties under some
stationarity conditions. Based on the simple and intuitive formulation
of the estimator, one would expect the method to have good conver-
gence properties in most situations. However, the next example shows
that the estimator (15) is not necessarily consistent in the heteroscedas-
tic noise case and thus it is not satisfying from the theoretical point of
view.

EXAMPLE 1. Let us consider that the set of univariate inputs consists
of two distinct parts, (X1

i )M1

i=1 and (X2
i )2M1

i=1 with X1
i = i

M1
, X2

2i =

X1
i −

1
4M1

and X2
2i−1 = X1

i + 1
4M1

. The outputs Y 1
i corresponding to the

variables X1
i are set as zero mean independent noise with unit variance,

whereas for X2
i the outputs are set to 0. In this case, the approximation

in (15) gives 1
2M

∑M
i=1(YN [i,1] −Yi)

2 = 1
2 . However, the right answer in

this case is 1/3 and, thus, it is clear that the method is not consistent
in this example.

The above problem was also noticed in [2], where a solution based
on modified nearest neighbor graphs was proposed. Our proposal to
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avoid the problem is to modify (15) to get

V̂M =
1

M

M∑
i=1

(Yi − YN [i,1])(Yi − YN [i,2]), (16)

which, despite the non-intuitive formulation is shown to have much
better properties than the original estimator.

In the rest, we show that the novel estimator converges regardless of
the smoothness of the conditional variance function (and thus is able
to solve the counterexample above).

5. Properties of the Estimator

In this section, we analyze the theoretical properties of the proposed
estimator. We show that the estimator is asymptotically consistent in
a general statistical setting. The analysis is done assuming that the
conditions of proposition 2 hold and that the outputs Yi have uni-
formly bounded second moments. It is also necessary to require some
smoothness of the function m in (3).

We have the following proposition on the rate of convergence of the
estimator. The main point in the proof is the fact that no smoothness
assumptions are needed on the conditional variance functions E[(Yi −
m(Xi))

2|Xi = x].

THEOREM 3. Assume that the continuity condition

|m(x) − m(y)| ≤ Cmρ(x, y)γ (17)

holds for some constants Cm > 0, 0 < γ ≤ 1 and m(x) = E[Y1|X1 =
x] = E[Yi|Xi = x] for all i > 0.

Then, the bias of the estimator given in (16) is bounded by

|E[V̂M ] − VM | ≤ C2
mE[δM,2,2γ ]. (18)

Proof. The proof is based on conditionalization with respect to the
sample (Xi)

M
i=1. The treatment relies on the basic properties of abstract

conditional expectations, see for example [18]. We make the definitions

bi,j = m(Xi) − m(Xj) (19)

ri = Yi − m(Xi). (20)
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Then, we write

E[(Yi − YN [i,1])(Yi − YN [i,2])]

= E[(bi,N [i,1] + ri − rN [i,1])(bi,N [i,2] + ri − rN [i,2])]

= E[bi,N [i,1]bi,N [i,2]] + E[bi,N [i,1](ri − rN [i,2])] + E[bi,N [i,2](ri − rN [i,1])]

+E[(ri − rN [i,1])(ri − rN [i,2])]. (21)

Now using the fact that E[ri|X
M
1 ] = 0

E[rN [i,k]|X
M
1 ] =

M∑
j=1

E[rN [i,k]|X
M
1 ]I(N [i, k] = j)

=
M∑

j=1

E[rjI(N [i, k] = j)|XM
1 ]

=
M∑

j=1

E[rj |X
M
1 ]I(N [i, k] = j) = 0, (22)

we have

E[bi,N [i,1](ri − rN [i,2])] + E[bi,N [i,2](ri − rN [i,1])]

= E[bi,N [i,1]E[ri − rN [i,2]|X
M
1 ]] + E[bi,N [i,2]E[ri − rN [i,1]|X

M
1 ]]

= 0 (23)

and |bi,N [i,1]bi,N [i,2]| ≤ C2
md2γ

i,2,M .
Next by the independence of the samples,

E[rirN [i,1]|X
M
1 ] = E[rirN [i,2]|X

M
1 ] = E[rN [i,2]rN [i,1]|X

M
1 ] = 0. (24)

This follows from the properties of conditional expectations:

E[rN [i,2]rN [i,1]|X
M
1 ] =

M∑
j=1

M∑
l=1

E[rlrj |X
M
1 ]I(N [i, 2] = j)I(N [i, 1] = l)

=
M∑

j=1

M∑
l=1

E[YlYj − m(Xl)m(Xj)|X
M
1 ]I(N [i, 2] = j)I(N [i, 1] = l)

= 0 (25)

and for this reason E[(ri − rN [i,1])(ri − rN [i,2])] = E[r2
i ] leading to the

conclusion

|E[V̂M ] − VM | ≤ M−1C2
m

M∑
i=1

d2γ
i,2,M . (26)
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COROLLARY 1. Under the assumptions of propositions 2 and 3 with
γ = 1, we have for n ≤ 2,

|E[V̂M ] − VM | ≤ 2CnC2
mM−1(1 + log(

M

2Cn
)) (27)

and, for n > 2,

|E[V̂M ] − VM | ≤
22/nn

n − 2
C2/n

n C2
mM−2/n +

4CnC2
mM−1

2 − n
. (28)

Proof. The corollary follows from proposition 2 by noticing that
E[d2

i,k,M ] ≤ E[dn
i,k,M ] for n ≤ 2.

It can be concluded that fast convergence is expected when n ≤
2, whereas for a higher dimension the rate of convergence decreases.
Notice that Cm can be chosen as the upper bound for the norm of the
gradient of m in case it exists.

If the stationarity condition on the conditional expectations E[Yi|Xi]
can be removed is an interesting question for future research. We would
like to note that the weaknesses and strongpoints of the method are the
same as for many other nonparametric regression methods including the
Nadarya-Watson and k-NN estimators. The simplicity of the method
makes it a good choice in low dimensional problems, even though
more sophisticated method obtain better rates of convergence (see for
example [19]).

In this section, the bias of the method was examined. Another
important question is the variance. However, the variance of nearest
neighbor based estimators is relatively well understood, see for example
[3, 4]. Using similar techniques it can be shown that the variance of the
estimator is of order M−1 as expected. The variance goes in general
slowly to zero, but in practical problems the major difficulty is the bias
of the algorithm, as the variance tends to be small compared to the
variance of the output.

Finally, we would like to further comment on the accuracy of the
algorithm. It can be seen from (21) that the term bi,N [i,1]bi,N [i,2] causes
the finite sample bias of the method. For the estimator in (15) the
corresponding term is of the form b2

i,N [i,1] as can be seen by a similar

calculation as in (21). However, moving to the linear case with m(x) =
wT x (the general case could be analyzed with a Taylor expansion), we
may write

bi,N [i,k] = wT (Xi − XN [i,k]), (29)
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which is related to the angle between the two vectors. Then, it is rea-
sonable to assume, that asymptotically the terms bi,N [i,1] and bi,N [i,2]

become uncorrelated leading to a low bias for the method, as the angle
between w and Xi −XN [i,k] is in general asymptotically uniformly and
independently distributed [4]. Based on this observation, we claim that
actually the novel method improves the original algorithm also in terms
of rate of convergence, a fact for which we do not yet have a formal
proof. We believe that the actual rate of convergence is M−3/n or even
M−4/n, of course depending on the regularity of the underlying system.

Finally, one should remark that the proposed method is very simple.
It could be possible to obtain improvement by combining our idea with
more sophisticated tool as the Gamma test [4] and the local linear
estimator in [19]. However, possible benefit probably come at the cost
of decreased robustness in real life applications.

6. Experiments

In the experiments we show, that the theoretical considerations lead
to a practical algorithm by comparing the estimator in [2] and our
method (16) in three different test problems. Notice that comparison
with methods like the Gamma test [4] is not meaningful, because es-
timators designed for homoscedastic noise variance estimation do not
necessarily address heteroscedasticity as demonstrated in example 1.

6.1. Linear Problems

In the first two experiments the estimators are tested on two linear
cases. The results of the experiment are plotted in figures 6.1(a) and
6.1(b).

In the first one, the observations are related to the inputs by

Y = X1 + 3X2 + sin(4πX1)ǫ, (30)

where (X1, X2) is sampled from the uniform distribution on [0, 1]2 and
ǫ ∼ N(0, 1) is independent Gaussian noise. The variance of residual is
in this case 0.5 and the variance of the output 10.5. The experiment
is repeated 100 times with the number of samples ranging from 100 to
5000 and the mean absolute deviation from the real noise variance is
calculated.

The second linear experiment is made to test the methods in a higher
dimensional case. In this case the model is

Y = X1 + X2 + X3 + X4 + 3X5 + ǫ (31)
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12 E. Liitiäinen, F. Corona and A. Lendasse

with (X1, X2, X3, X4, X5) ∈ [0, 1]5 and ǫ ∼ N(0, 1) the number of
samples varying between 100 and 5000. Observe that variable X5 has
more weight than the others making the problem more challenging for
methods using the Euclidean distance.
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Figure 1. Results of the linear models with the first experiment in (a) and the second
in (b). The dotted line is the mean absolute deviation of the estimator in [2] and
the solid that of the estimator (16).

In the first experiment, the methods are approximately equivalent,
whereas in the second one our method is more accurate. Especially
the second problem is challenging for both methods, as the problem is
relatively high dimensional, whereas in the first experiment the error is
mainly caused by statistical fluctuation of the estimators around their
expectations. However, even in the second case the novel estimator
achieves reasonable estimates.

6.2. Nonlinear Problems

The third experiment is a highly nonlinear product of sinusoids. The
model is

Y = sin(2πX1) sin(2πX2) sin(2πX3) + 0.2 sin(4πX1)ǫ (32)

with ǫ ∼ N(0, 1) and again (X1, X2, X3) uniformly distributed. The
variance of the residual is 0.02. Again, the mean absolute deviations
are calculated over the sample size varying from 100 to 10000 with the
results in figure 6.2.

The result with the novel residual variance estimator is again asymp-
totically good. However, in this problem both methods perform badly
with a small number of samples due to the nonlinearity of the data.
Convergence is nevertheless approached with a much better result for
the proposed novel method.
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Figure 2. Results of the parity function experiment. The dotted line is the mean
absolute deviation of the estimator in [2] and the solid that of the estimator (16).

7. Conclusion

In this paper, a novel method for residual variance estimation is pre-
sented in the context of supervised learning. It seems that despite the
usefulness of residual variance estimators they are not well-known in
the machine learning community and most work has been done in the
context of statistics. Thus one of the goals of this paper is introducing
a novel tool for model selection and data analysis.

The theoretical bounds derived for the proposed method imply that
the method has good asymptotic properties in low dimensional spaces.
The experiments show that in mildly nonlinear problems fast conver-
gence is expected, whereas in highly nonlinear problems a large number
of samples may be required. Interestingly, the results strongly support
the conjecture that the novel method has better convergence properties
than the original method on which it is based with clear practical
implications.

In the future, it is of interest to extend the idea to locally linear
estimators of residual variance [19]. In this case, better rates of con-
vergences would be obtained with the price of added complexity and
thus possibly reduced robustness. This type of a method would fit well
in data-sparse high dimensional applications and is thus an interesting
topic for future research.

Another important topic is further examination of the properties
of the novel method. An interesting open question is, what are the
minimal regularity conditions required to obtain the fast rates of con-
vergence discussed at the end of section 5. This type of a theory would
also have interesting applications in the field of nonparametric statistics
in general.
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