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ABSTRACT

We introduce GaZIR, a gaze-based interface for browsing
and searching for images. The system computes on-line pre-
dictions of relevance of images based on implicit feedback,
and when the user zooms in, the images predicted to be the
most relevant are brought out. The key novelty is that the
relevance feedback is inferred from implicit cues obtained in
real-time from the gaze pattern, using an estimator learned
during a separate training phase. The natural zooming in-
terface can be connected to any content-based information
retrieval engine operating on user feedback. We show with
experiments on one engine that there is sufficient amount
of information in the gaze patterns to make the estimated
relevance feedback a viable choice to complement or even
replace explicit feedback by pointing-and-clicking.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Relevance feedback, Search pro-
cess; H.5.2 [Information Interfaces and Representa-
tion]: User interfaces—Input devices and strategies (e.g.,
mouse, touchscreen)

General Terms

Algorithms, Experimentation, Performance

Keywords

Gaze-based interface, image retrieval, implicit feedback, zoom-

ing interface

1. INTRODUCTION

In recent years image retrieval techniques operating on
meta-data, such as textual annotations or user-specified tags,
have become the industry standard for retrieval from large
image collections. They work well with sufficiently high-
quality meta-data, but the need for more content-based ap-
proaches operating on low-level features extracted from the
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image content is still apparent. Content-based techniques
are useful for refining results of keyword searches and, more-
over, the available meta-data may not be sufficiently rich for
all queries.

In content-based image retrieval (CBIR) there has been a
lot of research on the retrieval accuracy, developing better
feature descriptions, improving the actual retrieval engines,
and refining evaluation metrics, resulting in search engines
[3]. To focus the search, the engines typically collect explicit
feedback from the user, about which of the shown images are
relevant.

We study whether it would be possible to make the in-
terface between the user and the search engine more fluent
and natural, by collecting the feedback implicitly from what
the user would do in any case. We will separate explicit
control and implicit feedback, and make the former intu-
itive to exercise and the latter as informative as possible. In
brief, the user will explicitly request for more (better) im-
ages by zooming in the interface, and the implicit feedback
is inferred from gaze tracking data while the user looks at
the images. This paper is a feasibility study on whether it is
possible to construct such an interface, and whether it works
in practice with an existing CBIR engine.

The main research question is to what extent the explicit
relevance feedback can be augmented or eventually replaced
by implicit relevance feedback inferred from the actions the
user would perform in any case, the idea being that remov-
ing a separate relevance feedback phase will make the in-
terface more natural and faster to use [7]. As a practical
information source, we use cues obtained by measuring the
eye movements of the user, following the success of earlier
attempts in inferring relevance from eye movements in text
retrieval [2, 4, 11]. As far as we know, there have so far only
been preliminary studies related to use of implicit gaze in-
formation in image retrieval [8, 10]. Oyekoya et al. present
a simple retrieval system that infers relevance from straight-
forward viewing time [10], whereas Klami et al. introduce a
more complex relevance predictor but only measure isolated
prediction performance in a simplified artificial setup [8]. We
combine the two approaches, developing an even more so-
phisticated relevance predictor and integrating it with a real
retrieval engine. Furthermore, we design the user interface
specifically for gaze-based interaction.

Eye movements as a source of implicit relevance feedback
have three major advantages. First, the user will by defini-
tion need to look at the images in order to make the decision
on relevance, and hence if relevance feedback can be inferred
from eye movements it will be completely effortless for the



user. The user just “looks at the images” as he normally
would. Secondly, the rich implicit feedback from eye move-
ments may help in the extremely hard problem of solving “I
will know it when I see it”-type of search tasks, where the
goal is ill-defined at best. Such tasks cannot be solved even
with meta-data if the user is not able to formulate explicit
queries. The third main advantage of using gaze tracking is
that with suitable hardware it is usable in mobile settings
when the hands cannot be used, and for users with motor
disabilities [1, 16]. While commercial gaze trackers are not
yet wide-spread, recent developments [14] suggest that low-
cost, robust eye tracking will be possible in the near future
also in standard desktop and mobile devices.

Gaze is used to explicitly guide the interface in Dasher,
a system for gaze-based text entry [16] which has been one
source of inspiration for our work. In Dasher a language
model will offer choices for the next letters to be typed,
with size of the letters on the display being proportional to
their predicted likelihood of being selected. Then the user
will look at the next letter in a zooming interface where new
letters will appear with speed controlled by gaze as well.
In our case the letters correspond to images, of which the
ones predicted to be most relevant are shown, and the user
scrolls to get more images. Most of the other features of the
systems are different, however; most notably the explicit vs
implicit feedback by the gaze. In explicit gaze-driven setups,
care has to be exercised to avoid the “midas touch” effect,
that it is tiring to use the eyes explicitly as control devices
for long because everything you look at will be selected [6].
Implicit feedback should not suffer from the same problem—
the intent is not that the user controls the system with eyes,
but instead that information is extracted from natural eye
movements.

Several techniques have been proposed for visualization
and navigation of large image collections, including meth-
ods like zooming and other distortions for displaying the
contents, and tree- or cone-like structures for organizing the
image collection. A comprehensive review of visual inter-
faces can be found in [17]. Our interface borrows elements
from this body of research, the main goal and novelty be-
ing in facilitating the interaction with gaze. The remaining
visualization decisions were made to create a simple and in-
tuitive interface.

In the remainder of the paper, we first describe the in-
terface and how it interacts with the gaze tracker and the
retrieval engine. Then we explain how the relevance of im-
ages is predicted from the gaze tracking measurements, and
demonstrate with user experiments that the accuracy of the
relevance predictions is relatively high. Finally, we per-
form preliminary experiments on actual image retrieval ac-
curacy using the learned relevance predictor. The approach
is shown to have promising performance with high accuracy
in certain kinds of search tasks. Work still remains, how-
ever; in particular, the performance is not high for all users
and search tasks.

2. GAZIR

2.1 Interface

The browsing interface is designed to elicit and collect
maximal amount of information from gaze while still being
a natural interface for browsing the image collection. Fig-
ure 1 illustrates the interface, showing three concentric rings

Figure 1: Screenshot of the GaZIR interface. Rele-
vance feedback gathered from outer rings influences
the images retrieved for the inner rings, and the user
can zoom in to reveal more rings.

of images. The outermost ring contains the first ten images
shown to the user, the second ring shows images retrieved
given the relevance feedback collected from the outermost
ring, and the innermost ring takes into account feedback
from the two previous rings. The user can zoom the in-
terface inwards and outwards. When zooming inwards the
system retrieves another set of images, using all the previ-
ous images and their estimated relevancies as feedback, and
eventually the older rings will disappear from the display.
They can, however, be recalled by zooming out, and the re-
trieval process can be restarted from any stage by erasing
the rings inside the current main ring.

The concentric rings of images were chosen instead of the
standard grid-based thumbnail display of most image re-
trieval interfaces, in order to avoid imposing gaze trajecto-
ries based on the structure of the display instead of the con-
tent. On a standard grid the users are likely to go through
the images in a row-by-row manner, considerably lowering
the amount of relevance information the eye movements con-
tain. Completely random placement of images would break
this pattern optimally, but a user is likely to find such an
interface unpleasant to use. A circle of images provides a
compromise between these two goals. It does not lead to
scanning patterns as strongly fixed as a grid would, allow-
ing image content to play bigger role in determining where
to look, yet it is sufficiently close to standard user interfaces
to feel intuitive.

For the purpose of learning the relevance predictor and
studying the interface, we perform the experiments in this
paper with two simplifications. First, the user is only ex-
pected to zoom inwards and not to reset the retrieval process
at any stage. Second, the retrieval engine is set to operate
in a sequential manner: A new set of images is fetched only
when the user zooms in and they are not updated after-
wards. An alternative would be to continuously update the
set of images on inner rings when the relevance estimates
on the outer rings change. These simplifications were made
so that we could collect reliable ground truth for learning
the relevance predictor. Finally, in the experiments we used
mouse wheel for zooming in and out to make the gaze based
interaction completely implicit. The interface can alterna-
tively be zoomed with explicit eye control (looking at the
center zooms in and looking at the borders zooms out).



Figure 2: A sample gaze pattern of a user interacting
with GaZIR. The line segments indicate saccades,
and the joints of two adjoining saccades correspond
to the fixation locations. Here the user is primar-
ily looking at images on the outermost ring, only
occasionally visiting the inner rings.

2.2 Eyemovements

We measured the eye movements with Tobii 1750 eye
tracker with 50Hz sample rate. The tracker has a set of
infra-red lights and an infra-red stereo camera attached to
a standard flat-screen monitor, and the tracking is based
on detection of pupil centers and measurement of corneal
reflection. See Figure 2 for an example gaze trajectory.

Raw eye measurements are preprocessed by first extract-
ing fixations and saccades with the algorithm described in
[13], judging a set of consecutive raw measurements to be a
single fixation if they occur within a dispersion of 30 pixels,
which at normal viewing distance is equivalent to roughly
0.6 visual degrees (17”7 screen with resolution of 1280%1024).
A fixation is defined to be a period of at least 120 millisec-
onds of looking at a single location on screen, and processing
of the visual stimulus takes place primarily during fixations
[12]. Hence we adopt the common approach of basing our
gaze trajectory representation in fixations.

The eye movements are measured for predicting which of
the viewed images were relevant for the search. To achieve
this, we convert the eye movements into a 17-dimensional
feature representation for each image and learn a classi-
fier from these representations to binary relevance labels
available in a training phase. The feature representations
characterize primarily eye movements between the different
images, whereas the information within the images is sum-
marized through averages over all fixations landing on the
image. This is because the images are small enough to fall
within the parafoveal vision and hence the viewer can typi-
cally extract sufficient information on the content by fixating
anywhere within the image. Hence, movements within the
image are not expected to provide much information in this
specific case, even though in general the task influences the
scan pattern within the images (see e.g. [15]).

Table 1 lists the features used in the experiments. In brief,
the features characterize aspects like how long the image was
viewed, how often it was viewed, and how soon after the on-
set it was viewed for the first time. Some of the features
also take into account the overall pattern over the different

circles of the interface. Each raw feature was further pre-
processed by the z-transform, by removing the mean and
dividing the values by the standard deviation.

2.3 Relevance prediction

The system needs relevance feedback to be able to choose
the set of images displayed on the next circle when zooming
in. It is possible to use the interface by explicitly indicating
the relevant images, but the main focus of this paper is in
investigating whether the explicit feedback can be replaced
by implicit feedback inferred from eye movements. The rel-
evance is predicted in real time for all of the images shown
within the main circle, using a classifier operating on the
features extracted from the gaze trajectory (see Table 1).

To predict the relevancies we use classical logistic regres-
sion. If we denote the feature vector of the ith image by
X;, then the model estimates the probability of that image
being relevant as

1
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Here w is a projection vector that weights the different fea-
tures, and « is a bias term. Both are learned to maximize
the likelihood of the true relevancies in labeled training data.
The final relevance predictions are made by thresholding
the probabilities with a pre-specified threshold ¢, so that
all images with relevance probability above the threshold
are deemed relevant. In absence of further information the
threshold is set to ¢ = 0.5, but depending on whether the re-
trieval engine is more sensitive to false positives or negatives
the threshold can be tuned higher or lower.

We chose logistic regression as the predictor for three main
reasons. First, it is very light-weight and hence enables com-
puting the predictions in real-time. It would also be efficient
enough for on-line adaptation. Second, the weight vector w
reveals information about importance of the different fea-
tures, enabling us to characterize what kinds of eye move-
ments are predictive of relevance. Finally, it provides proba-
bilities of relevance as output, instead of just discrete predic-
tions of relevant/non-relevant, and could hence be applied
in retrieval engines capable of utilizing non-binary feedback.

24 Retrieval engine

The interface can interact with any image retrieval engine
that operates through relevance feedback. Our current im-
plementation is built on top of the PicSOM [9] engine that
uses self-organizing maps for retrieval and MPEG-7 features
for describing the content. As PicSOM utilizes binary rele-
vance feedback, taking into account both positive and neg-
ative feedback, we restrict our interface to also send only
binary feedback. It should, however, be noted that the rel-
evance predictor could directly provide also probabilities of
relevance, and could be trivially extended to multiple levels
of relevance (e.g., relevant, not-relevant, no decision).

3. EXPERIMENTS
3.1 Relevance prediction

3.1.1 Data collection

We use the MIRFLICKR-25000 [5] database for evaluat-
ing the system. To learn the predictor we need training
data with known relevance judgments. The data needs to



Nr. | Name Description Type

1 IsRandom Whether the images were shown in the first stage (before any user feedback) | binary

2 FirstVisit Time passed between image onset and first visit continuous

3 MeanLength Mean length of fixations continuous

4 FixTimeSpread Standard deviation of fixation occurrence times continuous

5 SumLength Total length of fixations continuous

6 MaxContViewl Maximum continuous viewing time without viewing other images continuous

7 MeanContView Mean length of continuous viewing sessions of image continuous

8 MaxContView2 Maximum continuous viewing time without fixating outside the image continuous

9 RatioTotal Proportion of total viewing time over total viewing times of all other images | continuous
10 | RatioRing Proportion of total viewing time over total viewing times in the same ring continuous
11 | MeanSaccLength | Mean Length of saccade before fixation continuous
12 | MeanPrevimage | Proportion of times when previous fixation also over this image continuous
13 | MeanPrevEmpty | Proportion of times when previous fixation over empty space continuous
14 | MeanPrevRing Proportion of times when previous fixation over the same ring continuous
15 | FirstVisitIndex How many images viewed on this ring before the first fixation on image discrete (0-9)
16 | RevisitCount How many times image revisited in total discrete

17 | PrevDist Average distance from previously viewed image on the same ring discrete (0-5)

Table 1: The eye movement features used for predicting the relevance. The distance for PrevDist is measured

along the ring, the distance between neighbors being 1.

be collected in a realistic use scenario, to match the kind
of eye movements we would expect in real use, yet it needs
to be collected before we have a model for making the pre-
dictions. The easiest way to do this is to use a stand-in
estimator that provides relevance feedback sufficiently close
to what the users are expected to think.

In practice, we set up a specific given search task that
matches one of the existing high-quality category labels in
the MIRFLICKR collection, and asked the users to search
for images matching the category description. The true cat-
egory labels were used as feedback while collecting the data,
and after the experiment the users were taken back to the
beginning and asked to indicate which of the seen images
they had considered relevant by clicking them. This gave
us training data with actual user-specific relevancies, while
using a substitute relevance feedback during data collection
to ensure that the sets of images shown to the user are close
to what we should expect in real use.

We collected training data from 6 different users, each
performing 6 search tasks. Within each search task the
user saw on average around 120 images, so in total we have
eye movement measurements over 4300 user-task-image in-
stances. The tasks used in the experiments were chosen
randomly from 8 potential classes.

3.1.2 Accuracy

To evaluate the accuracy of relevance prediction, we car-
ried out a number of experiments where a subset of the
training data was used for learning the predictor, and the
accuracy was measured on the remaining left-out data. The
accuracy is measured with standard information retrieval
measures, namely area under the ROC-curve (AUC) and
mean average precision (MAP).

First we trained user-specific prediction models, using a
cross-validation procedure to evaluate the performance. We
learned a separate predictor for a subset of 4 search tasks
(out of the total 6), and computed the accuracy measures
as averages over the corresponding left-out sets. Four tasks
were chosen for training since they already provided fairly
large amount of data while the training phase still was quick
enough for practical user-adaptation in real-world use.

Figure 3 shows the distribution of AUC and MAP scores
for each user separately, using 50 random split-ups of the
tasks into the training and test sets. The prediction ac-
curacy is above random for all users, indicating that the
eye movements provide information on the image relevance.
Somewhat surprisingly, the accuracies of different users show
substantial differences. This is partly due to the fact that
different users had different search tasks, but it may also
indicate systematic differences in using the interface. Fur-
ther investigation is required to find out why exactly the
performance is poor for users 3 and 4.

Even though the user-specific accuracies vary a lot, we
tried also a user-independent prediction model. If a predic-
tor trained on other users is sufficiently accurate, the inter-
face can be used without requiring a separate user-specific
training phase. To evaluate this we we split all the avail-
able data into training and validation parts across the users,
and again computed the results as averages over a number of
random splits. Precision-recall curves of one run are used for
illustrating the performance, and the accuracy is compared
to two baseline approaches (Figure 4). The worse baseline
corresponds to ordering the images randomly, whereas the
other baseline is the simplest possible approach that utilizes
the gaze information: Images with at least one fixation are
predicted to be relevant, whereas the rest of the images are
not relevant. The purpose of the first baseline is to demon-
strate that gaze contains useful information, whereas the
latter baseline is included for showing the advantage of the
more advanced relevance predictor. The prediction model
outperforms the baselines according to both performance
measures.

3.1.3 What isinformative in gaze?

We first discuss the link between the gaze features and
predicted relevance, and then briefly illustrate the typical
mistakes of the predictor.

Figure 5 shows the values of the feature weights in the
logistic regression model. These were obtained using a sub-
set of two-thirds of all the collected data as a training set.
To assess the stability of the weights, the training was done
50 times, each time with a randomly chosen subset of all
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Figure 3: Comparison of retrieval accuracies (MAP
and AUC scores) of user-specific relevance predic-
tion models. The box-plots show the distribution of
values over different splits to training and validation
data. For all users, numbered from one to six on the
horizontal axis, the accuracy is above the random
baselines shown with dashed lines, but the accuracy
depends considerably on the user. For MAP the
baselines are user-specific due to different propor-
tions of relevant images.

the data. Most features tend to have a consistently posi-
tive or negative effect on the predicted relevance. The first
feature has a strong negative weight, indicating that fewer
images should be predicted relevant when starting the re-
trieval process — a random collection of images should show
less relevant images on the average.

Example features having strong positive effect are mean
length of fixations (3), total viewing time relative to other
images (9,10), and the average distance from the previous
image (17). All these are fairly intuitive, indicating that the
image is more likely to be relevant if the user is looking at
it for a long time and breaks the generic viewing pattern
to visit the image. At the same time, some observations
are less intuitive; for example, the number of images looked
at before fixating on the image (15) has a strong positive
weight, contradictory to the intuitive expectation of more
relevant images visited early on.

Figure 6 shows two false positives (first row) and two
false negatives (second row). It can be seen that the first
of the “false positive” images in fact contains animals, but
this was not noticed by the user when marking the relevant
images. The second image is indeed falsely detected as rel-
evant, however, similar images of underwater scenes often
show animals. Often the false positives are images that are
fairly similar to the relevant ones in terms of content, while
missing some detail that would make them relevant. For
most retrieval engines these kinds of false positives are not a
problem, since the engine would not be able to capture the
semantic component that made some of the images relevant
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Figure 4: Precision-recall and ROC curves for user-
independent relevance prediction model. The pre-
dictions (solid line) are clearly above the baseline
of random ranking (dash-dotted line), showing that
relevance of images can be predicted from eye move-
ments. The retrieval accuracy is also above the base-
line provided by a naive model making a binary rel-
evance judgement based on whether the image was
viewed or not (dashed line), demonstrating the gain
from more advanced gaze modeling.

anyway. Indicating these borderline images as relevant may
even improve the retrieval performance, since the engine is
guided towards retrieving images that match the conditions
where the human user will need to actually process the im-
age in order to determine its relevance.

On the other hand, the false negatives are often images
that can be very easily recognized as being relevant. In the
most extreme cases a user zooming in rapidly might correctly
categorize the image without fixating on it even once, since
the peripheral vision can capture sufficient visual features.
Separating such images based on the gaze data alone is likely
to be extremely hard or even impossible. Such behavior may,
however, be an artifact of the experimental setting where
the user is searching for images of a given category while
not having a real interest in the images. In a real search
task peripheral detection would more likely lead to closer
inspection of the image.

3.2 Imageretrieval
321 Setup

Encouraged by the good accuracy of the user-independent
relevance predictor, we made a preliminary experiment with
the full retrieval system using a pre-trained relevance pre-
dictor operating in real time. The predictor was trained on
all of the data from the six users, and relevance threshold
of t = 0.6 was chosen based on sensitivity analysis of the
PicSOM retrieval engine (not shown). Then a set of ex-
periments was performed, using a subset of the same six
test subjects to evaluate the actual retrieval accuracy. The
subjects were numbers 2, 5 and 6 in Figure 3, chosen to rep-
resent average users and excluding the users with the best
and worst accuracy.

Each user performed the same six new search tasks. The
tasks, shown in Figure 7, were chosen to provide a range
of tasks with different complexities and proportions of rel-



Figure 6: Sample images classified erroneously for the search task animals. The first row contains non-
relevant images (according to the ground truth given by the users) that were predicted as relevant, whereas
the second row contains images that were falsely predicted as non-relevant. Both false positive images show
natural backgrounds that might well have animals (in fact, the left one has birds, yet the user did not indicate
it as relevant). The false negative images are such that the user can trivially judge them to include animals
based on a quick glance, not needing to focus on the image. The images are from the MIRFLICKR database,
and released under Creative Commons license by the Flickr usernames jeslu (top left), amanky (top right),
Terry Foote (bottom left), and Malingering (bottom right).

evant images. For two of the tasks each subject used the
interface with the gaze-based relevance predictor. For two
other tasks the predictor was replaced with a dummy one,
predicting each image to be relevant with the probability
of the images matching the proportion of relevant category
labels in the image collection. This worked as a baseline for
determining whether the interface can provide more relevant
images than mere browsing in random order would. Finally,
the remaining two searches were done with the same inter-
face but using explicit relevance feedback from mouse clicks.
This provides an estimate of the accuracy achievable with a
traditional point-and-click relevance feedback.

Again the users indicated true relevance judgments after
performing the search (not needed for the click-based com-
parison method). We then measured the performance of the
different methods by counting the proportion of relevant im-
ages during the whole experiment. To take into account the
variability caused by the search target, we constructed the
experiment such that each of the three users did the same 6
tasks starting from the same initial conditions. However, dif-
ferent tasks were assigned to the three alternative methods,
so that each combination of task+method was measured.

3.2.2 Results

Figure 7 shows, for each method, the proportion of rele-
vant images shown during the experiment. In all six cases
both the explicit and predicted relevance feedback result in

more relevant images than random ordering, although for
both methods one of the six tasks (dog for explicit feedback
and flower for predicted feedback) are very close to ran-
dom. The explicit feedback gives on average, as expected,
most relevant images, but for three out of six tasks (people,
animals, dog) the implicit feedback is either comparable or
even better than explicit feedback.

The results are promising, but more extensive testing is
required to provide conclusive evidence. Content-based re-
trieval with relevance feedback is inherently very noisy, and
already small differences in early stage feedback can lead
to large changes in retrieval accuracy, which could only be
smoothed out by averaging over a much larger collection of
experiments. Taking into account also the user-specific pre-
diction accuracies presented in Figure 3 we can, however,
conclude that the performance of the GaZIR retrieval sys-
tem is currently sensitive to the personal viewing patterns
and the search task.

Further research is needed in particular to figure out why
exactly the performance is so poor for sunset images, as well
as to find out whether the predicted relevancies can actually
outperform explicit feedback as shown here for animals and
dogs. We have, however, potential explanations for both.
The sunset images are easy to spot even with peripheral vi-
sion, since they can be characterized with simple color fea-
tures. As suggested in Section 3.1.3, these kinds of images
are often predicted incorrectly to be non-relevant. The ani-
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Figure 5: Weights of the user-independent relevance
predictor. The numbering of the features corre-
sponds to that in Table 1, and the last item is the
bias term. The box-plots show the distribution of
the weights in 50 runs, each using a random subset of
the data for learning the model. Most of the weights
are consistently above/below zero, indicating that
the effect of that feature increases/decreases the
probability of relevance. See text for further dis-
cussion of the features.

mal categories, on the other hand, are such that the user will
inspect certain kinds of images to find out whether an animal
is present or not, based on prior expectations about natu-
ral contexts for animals. Such images are often predicted
to be relevant by our model even if there were no animals,
which results in the retrieval engine fetching more such im-
ages that in turn are likely to contain animals. It may be
that the retrieval engine can even more efficiently retrieve
potentially relevant images with this kind of feedback as the
feature representations used for retrieval consider the whole
image, not just the object of interest.

4. DISCUSSION

We introduced an interface for content-based image re-
trieval. The interface interacts with existing image retrieval
engines that utilize relevance feedback, and automates the
relevance feedback collection by using eye tracking. The eye
movement measurements are fed into a classifier predicting
the relevances, and the predictions are in turn given to the
engine.

The interface was designed to improve the information
content of eye movements while still being simple and intu-
itive to use. It provides the user with a set of images at a
time, but not in a standard grid structure of most retrieval
interfaces. Instead, the images are shown as rings that en-
able easy movement from image to image, and different sets
of images are shown as nested rings zooming towards infin-
ity. This allows easy backtracking.

We demonstrated by empirical experiments that the rele-
vance of the images can be inferred from eye movements with
a reasonably good accuracy. Some typical cases of mistaken
predictions were demonstrated, and high variance over users
was pinpointed as the main open question — for some users
the prediction accuracy is excellent, whereas for some the
accuracy is not much better than random guessing. We also
made brief preliminary experiments with the full retrieval
system. The results are promising, but more extensive test-
ing is required for conclusive evidence. Again, the model
seems to work very well in some conditions (certain kinds of
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Figure 7: Retrieval performance in real user exper-
iments. The bars indicate the proportion of rele-
vant images shown during the search in six differ-
ent search tasks for three different feedback meth-
ods. Explicit denotes the standard point-and-click
feedback, predicted means implicit feedback inferred
from gaze, and random is the baseline of providing
random feedback. In all cases both actual feedback
types outperform the baseline, but the relative per-
formance of explicit and implicit feedback depends
on the search task. See text for further analysis of
the results.

search tasks, sufficiently large number of relevant images),
while underperforming in others.

To our knowledge, the current system is the first attempt
of building a sophisticated image retrieval interface that uti-
lizes implicit gaze information. As such, it is definitely not
a finalized version. Further work will be needed for instance
to provide the user the possibility to correct mistakes made
by the relevance predictor. As shown by the experiments,
implicit cues from eye movements do not work well in all
situations, and hence some kind of overriding or other in-
teraction with explicit commands might be beneficial. One
way towards that is to use the relevance predictions to alter
the saliency of the images, for example by showing images
that are less likely to be relevant in smaller size.
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