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Summary. When a yeast cell is challenged by a rapid change in the conditions, be
it temperature, osmolarity, pH, nutrient or other, it starts a genome stress response
program. Survival of especially single-cell organisms depends on their ability to adapt
to the environmental changes and therefore stress response has received much at-
tention. In the budding yeast Saccharomyces cerevisiae several hundred genes out of
about 6500 present in the genome have previously been found involved in a stereo-
typed stress response pattern. Hierarchical clustering techniques applied to gene
expression measurements have also previously identified a subset of genes termed
common environmental stress response (CESR) or common environmental response
(CER) genes, that respond in the same way in a variety of environmental condi-
tions. There is evidence from two different sets of experiments that many of these
genes are regulated by the same Msn2p and Msn4p transcription factor pair. We
have extended the study by in silico data mining using a new supervised discrimi-
native clustering (DC) technique, which directly searches for responses potentially
regulated by the Msn2/4p factors. We observed a cluster of CESR/CER genes, com-
parable to those previously found and potentially regulated by Msn2/4p. The results
of discriminative clustering both support the viability of the technique in supervised
gene expression clustering and yield new insights into genomic stress response.

1 Introduction

The ability of the yeast Saccharomyces cerevisiae genome to respond to en-
vironmental changes is vital, since no cellular condition of gene activity is
universally optimal. The response of yeast cells to stress induced by drastic
changes in the environment has been used as a paradigm to study gene regu-
lation networks. It is also important to understand the cell response to stress
to its own value, since virtually any treatment introduces some kind of stress
situation for the yeast cells, and is thus present in any gene activity mea-
surement. Moreover, understanding yeast gene regulation will help as a model
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for studies on higher organisms. While it is clear that understanding gene
regulation requires data on chromosome structure, gene activity (transcrip-
tome), protein pool to mention only the major concepts, the transcriptome
has received the most attention due to the high throughput measurement
technologies available (gene chip/microarray).

The gene expression of the yeast under stress has been studied extensively
[1, 3, 9, 13], and it has become evident that a certain group of the yeast genes
is always activated during various stress treatments. The genes in this set are
often called common environmental response (CER) genes [1], or environmen-
tal stress response, ESR genes [3]. In this paper we adopt the term from [1],
and call them CER genes.

Due to differences in the documentation of the experiments in [3] and
[1], it still is somewhat uncertain whether the group of CER genes found in
one experimental setting is the same as the set of genes found in the other
experiments. Even more unclear is the understanding of the regulatory system
of the yeast stress response. There seem to be at least a few general “stress
regulators” like Yap1p, Msn2p, and Msn4p, that are shown to be required for
a large set of CER genes to be induced [1, 3]. In addition, the existence of
condition specific regulators, like Hsf1p for heat shock, has been noted [9].

We carry out a meta-analysis to study the concurrence of the two dif-
ferent CER gene definitions and the two independent sets of measurements.
Additionally, we refine in silico the earlier analyses of the role of the Msn2p
and Msn4p transcription factors in regulating the CER genes. We use a new
statistical data mining tool called discriminative clustering (DC) [7, 15, 16]
which differs from standard clustering by being supervised by class labels of
the data.

The clusters in DC partition the data into mutually similar sets, in the
same way as in the standard K-means clustering. The difference is that DC
maximizes the dependence of the clusters and the classes. An intuitive de-
scription of what DC does is that it uses the classes as hints on which samples
should be considered similar. Samples should be more similar if they belong
to the same class; more precisely, distances in directions where the class dis-
tribution changes more should be larger.

In this study the classes are chosen according to the response of the strain
lacking Msn2/4p to a stress treatment. Then DC will consider genes more
similar if their response is the same even after the potential stress regulator
Msn2/4p is removed. The cluster analysis becomes more focused on regulation
by Msn2/4p, instead of taking all differences in gene activation into account.

2 Discriminative Clustering

Consider a set of paired data (x, c), where x ∈ R
n are continuous-valued mul-

tivariate observations of primary data and c are discrete classes. In this work
each x is a profile of expression of a yeast gene in various stress treatments.
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In a nutshell, we wish to find clusters of x that are maximally dependent on
c. This task has two parts. (i) In order to call the data groups clusters, they
need to be local in the primary data space, that is, contain similar expres-
sion profiles. The second part is that (ii) the clustering should capture the
dependency between the primary data and the classes.

The motivation for (i) is that even though the clusters are supervised, they
can still be interpreted in the same way as “normal clusters” in unsupervised
clustering, as sets of similar data. The motivation for (ii) is that choosing the
classes properly allows us to focus the analysis to the variation relevant to the
classes. In this work we want to find evidence for regulation by Msn2/4p, and
we choose the classes to show how the genes react to stress treatments after
the Msn2/4p has been removed. Maximization of dependency with the classes
then forces the clustering to focus on similarities in the expression profiles
that are relevant to regulation by Msn2/4p. Genes regulated in the same way
will become more similar.

2.1 Definition of Clusters

Each cluster j is defined by a prototype mj . Samples x are assigned to the
clusters that have the closest prototype: x belongs to cluster j if ‖x−mj‖ ≤
‖x − mk‖ for all k. Here the distance is the standard Euclidean distance.
This definition is the same as in the standard K-means clustering method, for
instance.

2.2 Measuring Dependency

The clusters and the classes form a contingency table, a cross tabulation of
the two categorizations of the same data. The count of data nji within cell
(j, i) tells how many samples of class i occur in the cluster j. The margin
nj· =

∑
i nji gives the number of samples within cluster j, and the fixed

margin n
·i =

∑
j nji gives the total number of samples in class i.

The dependency between the clusters and the classes can be measured
based on the contingency table. If the true proportion of data occurring within
each cell, i.e. the joint distribution pji, was known, the dependency could be
measured by mutual information. However, since only a finite sample is avail-
able, the mutual information computed from the empirical distribution would
be a biased estimate. A Bayesian finite-data alternative is the Bayes factor
between models that assume dependent and independent margins. Bayes fac-
tors have classically been used as dependency measures for contingency tables
(see, e.g., [4]). We have used the classical results as building blocks to derive
the Bayes factor to be optimized; the novelty in DC is that we suggest maxi-
mizing the Bayes factor instead of only measuring dependency of fixed tables
with it.
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2.3 The Cost Function

In general, frequencies over the cells of a contingency table, as well as over the
margins, are multinomially distributed. The model Mi of independent mar-
gins assumes that the multinomial parameters of the contingency table cells
are determined by the posterior parameters at the margins. In the alterna-
tive model Md of dependent margins, the cell-wise frequencies are assumed to
have been sampled directly from a multinomial distribution over the whole
contingency table, which indirectly determines the margins. Dirichlet priors
are assumed for both the margin and the table-wide multinomials.

Maximization of the Bayes factor

BF =
p({nji}|Md)

p({nji}|Mi)
(1)

with respect to the clusters then gives a contingency table where the margins
are maximally dependent, that is, which cannot be explained as a product of
independent margins. The cluster margin is determined by the distribution
of the learning data set into the clusters, and the clusters in turn are defined
by their parameters (the cluster prototypes mj). The BF is maximized with
respect to the parameters.

After marginalization over the multinomial parameters, the Bayes factor,
assuming a fixed class margin, takes the form [16]

BF =

∏
ji Γ (nji + n0)

∏
j Γ (nj· + N0)

. (2)

Here nj· =
∑

i nji is the cluster margin, that is, number of data samples in
the clusters, and the parameters n0 and N0 =

∑
i n0 come from the Dirichlet

priors. We have set n0 = 1.
For large data sets compared to the number of clusters, (2) is approximated

by mutual information of the margins. Another interesting connection, shown
in [16], is that the Bayes factor equals the posterior density p({m}|D) of
the set of the cluster parameters {mj} of a certain predictive model. The
model predicts the class distribution within each cluster with a multinomial
distribution.

2.4 Optimization

The difficulty in optimizing (2) is that the data counts nji within the clusters
are discontinuous functions of the values of the cluster parameters mj . The
counts change only when a data point changes from one cluster to another.
Hence, the derivatives of the cost function are always either zero or undefined.

We have used a heuristic smoothing technique to make gradient-based
optimization possible. It has worked about as well as the theoretically better
justified simulated annealing that is much heavier computationally [7]. The
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“number” of samples is smoothed by nji =
∑

c(x)=i yj(x), where c(x) is the

class of x and yj(x) is a smoothed cluster “membership function”, defined
by yj(x) = Z(x)−1 exp(−‖x − mj‖

2/σ2) with Z such that
∑

j yj(x) = 1,
and σ governing the degree of smoothing. The standard conjugate gradient
algorithm was used for the optimization. The smoothing is used only during
optimization; afterwards the clusters partition the data space.

2.5 Related Methods

Discriminative clustering is closely related to the Information Bottleneck prin-
ciple [2, 17] and distributional clustering [12]. The main difference is that in
DC the primary data x is continuous-valued whereas in distributional clus-
tering it has always been categorical. For continuous-valued data the clusters
need to be defined and parameterized as partitions of the data space, which
makes the algorithms and solutions very different. Although no algorithm has
been developed it could in principle be possible to use the Information Bot-
tleneck definition for continuous data as well. Then the clusters would not be
local, however, and hence not as easily interpretable as “normal clusters”.

Another line of related work is model-based clustering of the joint distribu-
tion of the data [5, 11]. The difference is that DC as such does not model the
margin p(x) at all; it is a predictive model of the conditional density p(c|x).
The motivation for this choice comes from the learning metrics principle [6, 8]
which uses the classes c to derive a Riemannian distance measure to the pri-
mary data space. In the new metric the class distribution changes homoge-
nously, which stretches the directions where the class distribution changes
rapidly and contracts the directions where it does not. This is the desired
result if changes in the class distribution are the interesting thing in the data.
The metric can and has been used to supervise a variety of standard data anal-
ysis methods. The connection to DC is that it can be shown [6] that under
restrictive assumptions DC is asymptotically equivalent to standard K-means
in such a metric.

A direct connection between modeling of joint density and DC is that by
including a model for p(x), DC can be regularized to a model of joint den-
sity, p(x, c) = p(x)p(c|x). If p(c|x) comes from standard DC and p(x) from a
K-means type model, then the cost function of DC becomes a tunable com-
promise between K-means and DC [7]. This compromise can be interpreted
as regularization of DC towards K-means, which is useful for small data sets,
assuming the density structure in p(x) contains useful hints for the prediction
task.

3 Data

Both Causton and colleagues [1] and Gasch and colleagues [3] have used DNA
micro-arrays to analyze changes in the transcriptome (pool of all gene tran-
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scripts from a cell or cell population) in yeast cells responding to a panel of
diverse environmental stresses. The conditions include treatment with heat,
changes in pH, in salt concentration, in osmolarity, in reactive oxygen or nutri-
ent concentrations. In each condition, first a reference time-point is measured
and then transcriptome data from a set of consecutive time points follow-
ing the environmental challenge are gathered. Altogether, each of the two
research groups has gathered about 150 micro-array measurements covering
the full yeast genome of about 6200 known or predicted genes. Both groups
attempt to define “genomic expression programs”, in other words groups of
genes that are commonly involved in handling most or all stress challenges.

In [1] a set of “Common Environmental Response” (CER) genes is defined
as follows: First genes, whose expression was found to be induced or repressed
in all conditions, were identified by visual inspection from a hierarchically
organized tree. Then the genes that changed at least twofold (up or down)
in five or six time courses were selected as CER genes. The authors collected
499 genes with a common response to most of the environmental changes
examined. Of the 499 genes, 216 were found up-regulated (activated) while
283 were down-regulated (repressed). In [3] the environmental stress response
(ESR) genes are more strictly defined: two hierarchical clusters of genes, one
with ca 300 activated, the other with ca 600 repressed genes were identified as
having a stereotyped response to each of the stress conditions. In all the time
series the data was divided by the value of the respective timepoint zero.

It is known from previous studies that many stress response genes are
under the regulation of the Msn2p and Msn4p transcription factors [10] and
therefore both groups also make attempts to measure stress response in yeast
strains mutant for these transcription factors. In [1] a CER subset (not doc-
umented) of 136 genes is identified based on their opposite behavior in the
mutant lacking Msn2/4p as compared to the wild type control in the acid
challenge experiment. Since we were not able to obtain this list of 136 genes,
we imitated the original preprocessing of the data according to the documen-
tation, resulting in a set of 4146 genes, which we analyze further with DC.

In [3] an ESR subset of 180 genes depending on Msn2/4p or the Yap1p
transcription factors is documented. In order to compare these findings with
ours we had to find matching genes in the data set of [1]. A match was found
for a subset of 143. We will refer to this common set of genes by “dependent
CER genes from [3]”.

4 Results

4.1 Msn2/4p Regulated CER Genes by Discriminative Clustering

In [1], the CER genes were identified and analyzed in two stages. First, it
was assumed that the CER genes react in the same way in all of the stressful
environmental conditions. The expression profiles of all genes were clustered,
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and sets of the most up- and down-regulated genes were identified by visual
inspection from the hierarchical clustering tree. Second, the response of the
genes to a mutation in the putative regulators, Msn2/4p, was studied. A set of
genes up-regulated in the wild type but down-regulated in the mutant strains
was identified as CER genes potentially regulated by Msn2/4p.

This setting is perfectly suited for discriminative clustering. The goal is to
cluster the expression profiles to discover similarly behaving genes. Yet, pure
unsupervised clustering is not enough; it is particularly interesting to search
for those similarities in expression that are regulated by Msn2/4p.

In the discriminative clustering setup, the expression profile of a gene is
x, and the supervising class label c comes from the response of the gene to
the mutation. We quantized the response to acid treatment after mutation
(vs. time-point zero) to three classes: down: strongly down-regulated after
mutation (one quarter of genes); up: strongly up-regulated (one quarter of
genes); and no change: the rest. DC then finds clusters of genes that (1)
behave similarly in the set of stress treatments and (2) respond similarly to
the mutation.

We start by verifying the technical findings quantitatively, by checking
that the dependencies the supervised clustering finds are replicable. Then
we interpret the results and compare the findings qualitatively with those in
[1]. Due to differences in reporting of the results in the papers, quantitative
comparison is possible only with [3]; it will be carried out in Sect. 4.2.

DC Results Are Replicable

In order to verify that the results of supervising the clustering are real and
not merely results of overfitting the clusters to noise in the data, we compared
them to standard unsupervised K-means clusters with cross-validation.

The smoothing parameter σ = 0.9 used in the optimization was chosen
with a validation set in preliminary experiments, and the number of clusters
was set (heuristically) to 12. DC was initialized by K-means.

In the cross-validation study the data was randomly divided into N = 20
sets. Clusters were computed with N −1 of the sets, and the results evaluated
with the remaining test set. T-test over the N = 20 replications showed that
the DC consistently (P < 0.001) found dependencies between the classes and
the expression profiles. The performance measure was (2).

DC Finds a CER Cluster Downregulated in Mutant Lacking Msn2/4p

The expression profiles of the yeast genes in the 12 clusters are shown in
Figs. 1.–3. DC was computed of the whole set of 4146 genes used in [1]. Each
expression profile is a set of time series under different stress treatments. The
time labels are shown in Fig. 4. and a detailed description of the time series
can be found in [1].

The most striking finding is the cluster number 5 (enlarged in Fig. 4.),
containing 103 genes that have highly upregulated expression in all the treat-
ments for the wild strain and an exceptionally large proportion of the genes are
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Fig. 1. Gene expression profiles in a set of stress treatments clustered into 12
DC clusters. Each subfigure contains the genes within one cluster, and each row is
the profile of one of the genes. The rightmost column shows the class of the gene:
whether it is up- or down-regulated in the acid treatment in the mutant strain
lacking Msn2/4p. Continued in Figs. 2.–3.
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Fig. 2. Gene expression profiles in a set of stress treatments clustered into 12
DC clusters. Each subfigure contains the genes within one cluster, and each row is
the profile of one of the genes. The rightmost column shows the class of the gene:
whether it is up- or down-regulated in the acid treatment in the mutant strain
lacking Msn2/4p. Continued in Figs. 1. and 3.
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downregulated in the mutant strain lacking Msn2/4p (Fig. 5.). This cluster
is the most likely candidate for CER genes that are regulated by Msn2/4p.

The possibility that the class distribution within cluster number 5 could
have arisen by chance was evaluated by random sampling. If there is no in-
teraction between the classes and the clusters, the distribution of data in the
contingency table is determined completely by the distribution of data in its
margins, that is, the classes and clusters. We sampled a large set (10,000) of
contingency tables under the hypothesis that the margins are independent,
and estimated for each contingency table cell how unexpected the observed
value is. The P-value for obtaining a more extreme value than the observed
number of samples was computed as a percentage within the sampled set.

The resulting P-values for each contingency table cell are shown in Ta-
bles 1. and 2.. For cluster number 5 the number of downregulated genes is
much larger than expected (P < 0.001) and the number of non-affected genes
is much lower than expected (P < 0.001). Hence, it is very unlikely that the
observed interaction of the effect of msn2/4 mutation and the very active
CER-type response profile of the genes would have arisen by chance.

Table 1. Unexpectedness of the enriched contingency table cells. The table shows
P-values for those cells where the number of samples exceeded the expected amount.
For instance, in cluster 5 the number of downregulated genes is significantly higher
than expected, whereas the number of upregulated and not changed genes is smaller
than expected (marked by “–” and treated in Table 2.)

upregulated downregulated no change

Cluster 1 0.02 – 0.31
Cluster 2 – 0.41 0.46
Cluster 3 0.40 0.07 –
Cluster 4 – 0.17 0.23
Cluster 5 – < 0.01 –
Cluster 6 0.22 – 0.31
Cluster 7 – < 0.01 0.11
Cluster 8 0.06 – 0.13
Cluster 9 – 0.30 0.43
Cluster 10 0.15 – 0.47
Cluster 11 0.01 0.03 –
Cluster 12 – 0.44 0.45

We cannot verify quantitatively how closely our findings match those of
Causton et al. [1] since they do not report the full list of gene names. We will,
however, compare our list with the list of another study [3] in Sect. 4.2.
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Fig. 3. Gene expression profiles in a set of stress treatments clustered into 12
DC clusters. Each subfigure contains the genes within one cluster, and each row is
the profile of one of the genes. The rightmost column shows the class of the gene:
whether it is up- or down-regulated in the acid treatment in the mutant strain
lacking Msn2/4p. Continued from Figs. 1.–2.

Table 2. Unexpectedness of the contingency table cells with diminished number of
samples. The table shows P-values for those cells where the number of samples falls
below the expected amount. For instance, in cluster 5 the number of not changed
genes is significantly smaller than expected, whereas the number of downregulated
genes is larger than expected (marked by “–” and treated in Table 1.)

upregulated downregulated no change

Cluster 1 – < 0.01 –
Cluster 2 0.38 – –
Cluster 3 – – 0.11
Cluster 4 0.02 – –
Cluster 5 0.08 – < 0.01

Cluster 6 – 0.08 –
Cluster 7 < 0.01 – –
Cluster 8 – < 0.01 –
Cluster 9 0.20 – –
Cluster 10 – 0.13 –
Cluster 11 – – < 0.01

Cluster 12 0.31 – –
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Fig. 4. Left: Enlarged gene expression profiles in a set of stress treatments for genes
in cluster 5. Each row is the profile of one of the genes. Right: Expression profiles
of the same genes in the mutant strain lacking msn2/4. These profiles have been
used for defining the classes of the genes (shown in the rightmost columns). The
classes tell whether the genes are up- or down-regulated in the acid treatment in the
mutant.
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Fig. 5. Behavior of the genes of cluster number 5 in the mutant strain lacking
msn2/4 differs markedly from the expected behavior
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Other Findings

We tried to see if the clustering would find a group of stress response genes, the
expression of which is independent of the Msn2/4p regulation. Cluster 7 (Fig
1 (b)) contains many down-regulated genes, especially in the peroxide and os-
motic shock experiments. Since Msn2/4p are primarily transcription activator
factors (and not repressors) [10] these down-regulated genes are probably not
under the direct control of Msn2/4p. However, these genes could be under an
indirect control of Msn2/4p if one considers that Msn2/4p could activate some
secondary repressing regulators. Therefore, the relatively high abundance of
down-regulated genes in cluster 7 is not in itself a reflection of Msn2/4p-
independence. Now, if the down-regulation of these genes would be indirectly
repressed by Msn2/4p, the expression should rise in the mutant strain lacking
Msn2/4p. Interestingly, this does not seem to be the case for a fairly (p<0.01,
Table 1) large amount of these genes that remain down-regulated also in
the mutant. Therefore, we conclude that cluster 7 might contain a significant
amount of stress response genes independent of the Msn2/4p-regulation.

However, not all clusters with stress-activated genes obey the Msn2/4p
regulation, as can be seen in cluster number 1. Tables 1. and 2. reveal addi-
tional potentially interesting interactions between the expression profiles and
the Msn2/4p regulation. The genes in cluster number 1 are predominantly
up-regulated within the stress treatments (see Fig. 1.) but only very few of
them are affected by the mutation. Hence, they are likely regulated by some
other transcription factors than Msn2p or Msn4p.

4.2 DC Findings Are Consistent with Experiments in a Different
Stress Treatment

Two groups [1, 3] have sought for yeast stress-induced genes and their regula-
tion by Msn2/4p. The main difference is that the former studied the response
of the msn2/4 mutant in acid stress and the latter in hydrogen peroxide and
heat stress. The independent sets of measurements were made with differ-
ent measurement techniques (cDNA microarrays vs. Affymetrix chips). If the
genes are true CER genes they should of course react generally to any type
of stress, and hence be equally detectable in either set of experiments.

So far in this article we have only used the measurements of one of the
groups [1]. Now the results of the other group will be used in an independent
evaluation to verify our findings. Since replication studies are relatively scarce
in large-scale gene expression studies because of the cost of the measurements,
it will additionally be interesting to see how consistent the findings from the
two data sets are. Our study provides some indirect evidence on this.

The Findings Are Consistent

As a sanity check, we first compared whether the set of CER-type genes found
to be down-regulated in the Msn2/4p mutants in the independent study [3]
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were down-regulated in [1] as well. A matching gene was found for a subset of
143 genes; we will refer to this set as “dependent CER genes from [3]”. Within
this set, exceptionally many genes are down-regulated in the independent
measurements of the acid treatment [1] as well (Fig. 6.). The distribution
differs significantly (chi-square test, P < 0.001) from the expected distribution
estimated from the whole data set, which completes our sanity check.
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Fig. 6. Behavior of dependent CER genes from [3] in the acid treatment of [1] (a)
differs strongly from the overall expected behavior computed from all the genes in
[1] (b)

Next, we used the results of the independent study to verify the DC results.
Based on Figure 5, the cluster number 5 should contain a large proportion of
CER genes regulated by Msn2/4p. This finding is based on analyzing one of
the data sets with DC, and now the result is compared with a non-DC analysis
of the other independent set. If the result is favourable, it will support the
viability of DC.

Fig. 7. shows that the proportion of the independently found CER genes
in cluster number 5 is exceptionally high; the number differs significantly from
chance (chi-square test, P < 0.001).

Not all of the dependent CER genes found in [3] belong to cluster 5,
however. Nevertheless, they are distributed very inhomogenously in the DC
clusters (Fig. 8.). In particular, a number of them have ended up in clusters
1, 3, and 11. These clusters contained the largest proportion of generally
up-regulated genes in the DC-clusters (Figs 1.–3.). In clusters 1 and 11 the
behavior of the mutant strains differed clearly from chance (Tables 1. and 2.).
This suggests that some genes predicted to be Msn2/4p-regulated end up
in the different clusters because they are not solely dependent on Msn2/4p.
Indeed, regulation of gene transcription in yeast, as in other organisms, is
achieved by synergistic binding between several transcription factors and other
proteins building up the transcription initiation complex.
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Fig. 7. The dependent CER genes found in an independent study [3] are consider-
ably enriched in cluster 5 (a), compared to the expected number of genes calculated
from all the genes in [1](b)
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Fig. 8. The dependent CER genes found in an independent study [3] are concen-
trated on only a few DC clusters (a), compared to the distribution expected based
on the whole data from [1](b)

5 Discussion

In summary, we have applied a new supervised clustering method, discrimi-
native clustering (DC), to mine gene expression profiles for common environ-
mental response (CER) genes and their regulatory mechanisms.

The clustering was supervised to focus on gene expression relevant to reg-
ulation by certain transcription factors, Msn2/4p. The findings are consistent
with both of the two earlier studies on the same problem [1, 3]. DC has been
originally developed for supervised mining of large data sets, and the results
support its usefulness in genome-wide mining of expression data.
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Additionally, the DC clustering suggested possible subclasses within the
set of CER genes.

The DC complements standard unsupervised clustering by making it pos-
sible to supervise the exploration of data. Ultimately, when the resulting
hypotheses mature, they need to be tested with even more focused meth-
ods and models. The current findings suggest a follow-up study where the
stress-induced genes that are down-regulated in mutants lacking Msn2/4p
mutants would be sought directly by searching for genes with high activity
(up-regulation) in the wild type and low activity (down-regulation) in the
mutants.

As a side study, we compared indirectly the results of two research groups,
working with different methods and published in different papers [1, 3]. To the
extent the documentation allows, the results seemed compatible. It would be
interesting to continue the present DC study by generalizing from one super-
visory signal, class labels, to multiple classifications derived from the response
of the mutant strains to different stress treatments. Data is already available
by [3]. The results should reveal more about the compatibility of the differ-
ent data sets and should yield more accurate hypotheses about which genes
are true CER-genes and respond similarly to all kinds of stress treatments.
Moreover, instead of quantizing the responses to three classes they could be
considered as multivariate continuous-valued observations. Then the recent
generalization of discriminative clustering from categorical supervisory signal
to continuous-valued multivariate signal [14] could be the proper data analysis
tool.
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