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Abstract. Independent Variable Group Analysis (IVGA) is a principle
for grouping dependent variables together while keeping mutually inde-
pendent or weakly dependent variables in separate groups. In this paper
an agglomerative method for learning a hierarchy of IVGA groupings is
presented. The method resembles hierarchical clustering, but the distance
measure is based on a model-based approximation of mutual information
between groups of variables. The approach also allows determining opti-
mal cutoff points for the hierarchy. The method is demonstrated to find
sensible groupings of variables that ease construction of a predictive model.

1 Introduction

Simplifying the structure of a data set is an important preprocessing step allow-
ing application of machine learning and data mining techniques to large data
sets. One effective method of achieving this is to break the large problem to
smaller subproblems that can be solved independently. If the computational
complexity of the learning technique of interest is superlinear, this can speed up
processing and decrease memory requirements significantly.

Independent Variable Group Analysis [1, 2] (IVGA) aims at grouping of
mutually dependent variables together and placing independent or weakly de-
pendent ones in different groups. The IVGA problem can be solved in many
different ways. The original IVGA algorithm [1, 2] uses mixture models for
modelling of the individual groups and a heuristic combinatorial hill climbing
search to find the optimal grouping [1].

In this paper an alternative grouping algorithm for IVGA called Agglom-

erative Independent Variable Group Analysis (AIVGA) is presented. AIVGA
is based on the idea of agglomerative hierarchical clustering of variables [3].
Initially, each variable is placed on a group of its own. The groups are then
combined by greedily selecting the operation that decreases the cost most. The
result is a hierarchy of groupings of different sizes. This can be more useful
than a single grouping returned by the original IVGA algorithm if the optimal
number of groups provided by IVGA is not optimal for future processing.
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The general problem of hierarchical clustering of variables and some related
methods are studied in Sec. 2. The computational methodologies behind AIVGA
and the algorithm itself are presented in Sec. 3. Sec. 4 presents experimental
results on applying the algorithm as preprocessing for a prediction task. The
paper concludes with discussion in Sec. 5.

2 Hierarchical Variable Grouping

The result of the AIVGA algorithm can be seen as a hierarchical clustering of
variables, similarly as the solution of an IVGA problem can be seen as a regular
clustering of the variables. For each level in the clustering, there is a probabilistic
model for the data consisting of a varying number of independent parts, but there
is no single generative model for the hierarchy. The Bayesian marginal likelihood
cost function used in AIVGA allows determining the optimal points to cut the
tree similarly as in the Bayesian hierarchical clustering method [4].

The AIVGA approach can be contrasted with models such as the hierarchical
latent class model [5] in which the latent variables associated with different
groups can be members of higher level groups. The latent class model presented
in [5] is, however, limited to categorical data whereas AIVGA can also be applied
to continuous and mixed data. The simpler structure of the separate IVGA
models makes the method computationally more efficient.

AIVGA is closely related to the hierarchical clustering algorithm using mu-
tual information presented in [6]. The main difference is that AIVGA provides a
generative model for the data at each level of the hierarchy. Also, the Bayesian
model-based approximation of mutual information allows determining the opti-
mal cutoff point or points for the hierarchy and provides a more reliable global
cost function.

The IVGA models formed in different stages of the AIVGA algorithm have
many possible interpretations and therefore many connections to other related
methods. These are reviewed in detail in [2]. In context of the AIVGA algorithm,
the most interesting interpretation for IVGA is clustering of variables. The
mixture models used to model the groups yield a secondary clustering of the
samples, thus relating IVGA to biclustering. This makes AIVGA in a sense a
hierarchical alternative of biclustering. However, both IVGA and AIVGA always
cluster all the variables and samples, while biclustering methods concentrate only
on interesting subsets of variables and samples.

3 Algorithm

Let us assume that the data set X consists of vectors x(t), t = 1, . . . , T . The
vectors are N -dimensional with the individual components denoted by xj , j =
1, . . . , N , and let Xj = (xj(1), . . . , xj(T )). The objective of IVGA and AIVGA
is to find a partition of {1, . . . , N} to M disjoint sets G = {Gi|i = 1, . . . ,M} such
that the sum of marginal log-likelihoods of models Hi for the different groups
is maximised. As shown in [2], this is approximately equivalent to minimis-



ing the mutual information (or multi-information when M > 2) between the
groups. As this cannot be evaluated directly, the bounds evaluated using the
variational Bayes (VB) approximation [2] are used instead to get a cost function
C to minimise:

C(G) =
∑

i

C({Xj |j ∈ Gi}|Hi) ≥ −
∑

i

log p({Xj |j ∈ Gi}|Hi), (1)

where

C({Xj |j ∈ Gi}|Hi) =

∫
log

qi(θi)

p({Xj |j ∈ Gi},θi|Hi)
qi(θi)dθi. (2)

As a byproduct, an approximation qi(θi) of the posterior distribution p(θi|X,Hi)
of the parameters θi of each model Hi is also obtained. This approximation min-
imises the Kullback–Leibler divergence DKL(q||p).

As in [2], the individual groups are modelled with mixture models. The
mixture components are products of individual distributions for every variable.
These distributions are Gaussian for continuous variables and multinomial for
categorical variables. For purely continuous data, the resulting model is thus
a mixture of diagonal covariance Gaussians. Variances of the Gaussians can
be different for different variables and for different mixture components. The
models are learned with a variational EM algorithm. Exact details and learning
rules are presented in [2].

An outline of the AIVGA algorithm is presented as Algorithm 1. The algo-
rithm is a classical agglomerative algorithm for hierarchical clustering [3]. It is
initialised by placing each observed variable in a group of its own. After that
two groups are always merged so that the reduction in mutual information is as
large as possible. As the cost function of Eq. (1) is additive over the groups,
changes can be evaluated locally by only considering the changed groups.

Algorithm 1 Outline of the AIVGA algorithm.

c ← N,Gi ← {xi}, i = 1, . . . , N
while c > 1 do

c ← c − 1
Find groups Gi and Gj such that C({Gi ∪ Gj}) − C({Gi,Gj}) is minimal
Merge groups Gi and Gj

Save grouping of size c

end while

The AIVGA algorithm requires fitting O(N2) mixture models for the groups.
This is necessary as for the first step all pairs of variables have to be considered
for possible merge. After this, only further merges of the previously merged
group with all the other groups have to be considered again.

The expected results of merging two groups are estimated by learning a mix-
ture model for the variables in the union of the two groups. The resulting cost



of the combined model is compared to the sum of the costs of the two indepen-
dent models for the groups. In order to avoid local minima of the variational
EM algorithm, the mixture models are learned several times with different ran-
dom initialisations and the best result is always used. The number of mixture
components is found by perturbing the number of components in reinitialisation
and pruning out unused components during EM iteration. The initial number
of mixture components is 2. It is more likely that the number increases than
decreases. The new number is saved only if the new model is the best for the
particular group so far.

4 Experiment

In the experiment, we considered a system to support and speed up user input
of component data of a printed circuit board assembly robot. The system is
based on a predictive model which models the redundancy of the existing data
records using association rules. The application is described in detail in [7].

Our goal was to find out if a set of small models would work better than a
large monolithic model – and if so, we could determine a set of such models. We
divided the data of an operational assembly robot (5 016 components, 22 nominal
attributes) into a training set (80 % of the whole data) and and a testing set
(the remaining 20 %). AIVGA was run three times for the training data set.
On each run, almost the same result was obtained. In Fig. 1, the grouping tree
(dendrogram) that contains the grouping with the lowest cost is shown.
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Fig. 1: A grouping (left) and cost history graph (right) for the component data.
The model with the lowest cost consists of two groups.

After the groupings were found, association rules were used for modelling of
the dependencies of (i) the whole data and (ii) variable groups of the 21 different
variable groupings. The association rules are based on so-called frequent sets,
which in our case contain the attribute value combinations that are common in
the data. Support of a set is defined as the proportion of entries of the whole
data in which the attribute values of the set are present.



There exists various algorithms for computation of the frequent sets which
differ in computational aspects but which all give identical results. We computed
the sets using a freely available implementation of the Eclat algorithm [8]1.
For the whole data, the minimum support dictating the size of the model was
set to 5 %, which was the smallest computationally feasible value in terms of
memory consumption. For the group models the minimum support was set to
0.1 %, which always gave clearly smaller models than the one for the whole data.
Minimum confidence (the “accuracy” of the rules) was set to 90 %.
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Fig. 2: Prediction results when the data have been divided into 1 . . . 22 group(s).
For each grouping, the results are sums of results of all the models corresponding
to the grouping. The right panel indicates the the prediction results when the
missing predictions of the first variable of each group are ignored. In the left
panel, these are taken into account. The legend shown in the left panel is the
same for both illustrations.

The rules were used for one-step prediction of the attribute values of the
testing data. In Fig. 2, the proportion of the correct, incorrect, and missing
predictions (that is, the cases when the confidence of the best rule was below 90
%) are shown for the whole data and grouped data. For the first variable of any
group, previous input does not exist, so the prediction is always missing.

Fig. 2 reveals two different aspects of the results. The left panel shows the
total prediction results. The right panel shows the performance of the predictive
scheme for the values for which it was even possible to try to compute a predic-
tion. In terms of correct predictions, the total results are best using 2 groups,
but the predictive scheme performs slightly better when there are 3 groups.
However, the left panel indicates that if the data are grouped in 2–4 groups,
the number of the correct predictions is higher than using the monolithic model.
The models are also clearly lighter to compute and consume less memory.

In this experiment, the 2 groups were the same as those found in our earlier
study [2] with the same data using non-agglomerative IVGA. However, compu-
tation of the results in the previous study took dozens of hours whereas in this
case we needed only a small fraction of it (about three hours). In addition, the
AIVGA provided a systematic way for determination of the 2 groups whereas
using the non-agglomerative approach, finding the groups was more laborious.

1See http://www.adrem.ua.ac.be/~goethals/software/index.html



5 Discussion and Conclusions

In this paper, we presented AIVGA, an agglomerative algorithm for learning
hierarchical groupings of variables according to the IVGA principle. AIVGA
helps the use of IVGA when further use of the results makes the optimal number
of groups difficult to determine. The computation time of a single AIVGA run is
comparable to a single run of the regular IVGA algorithm [2], so the additional
information in the tree of groupings comes essentially for free. If the single best
grouping is sought for, the output of AIVGA can be used to initialise the regular
IVGA algorithm [2], which can then relatively quickly find if there are better
solutions that are nearly but not exactly tree conforming.

In addition to the presented example, the proposed method has several po-
tential applications. For instance, AIVGA may be used for feature selection in
supervised learning by finding variables having the strongest dependencies with
the target variable as in many other methods using mutual information [9, 2].

The cost function of IVGA and the probabilistic modelling framework can in
some cases provide more meaningful clustering results than existing algorithms.
AIVGA effectively complements that by providing a structured solution mecha-
nism as well as a richer set of potential solutions.
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