Contents

	Pref	àce		xvii
1	Intro	oduction		1
	1.1	Linea	r representation of multivariate data	1
		1.1.1	The general statistical setting	1
		1.1.2	Dimension reduction methods	2
		1.1.3	Independence as a guiding principle	3
	1.2	Blind	source separation	3
		1.2.1	Observing mixtures of unknown signals	4
		1.2.2	Source separation based on independence	5
	1.3	Indep	endent component analysis	6
		1.3.1	Definition	6
		1.3.2	Applications	7
		1.3.3	How to find the independent components	7
	1.4	Histor	ry of ICA	11

Copyright ©2001 John Wiley & Sons v

Part I MATHEMATICAL PRELIMINARIES

2	Ran	dom Vec	ctors and Independence	15
	2.1	Proba	ability distributions and densities	15
		2.1.1	Distribution of a random variable	15
		2.1.2	Distribution of a random vector	17
		2.1.3	Joint and marginal distributions	18
	2.2	Expec	ctations and moments	19
		2.2.1	Definition and general properties	19
		2.2.2	Mean vector and correlation matrix	20
		2.2.3	Covariances and joint moments	22
		2.2.4		24
	2.3	Unco	rrelatedness and independence	24
		2.3.1	Uncorrelatedness and whiteness	24
		2.3.2	Statistical independence	27
	2.4	Condi	itional densities and Bayes' rule	28
	2.5	The m	ultivariate gaussian density	31
		2.5.1	Properties of the gaussian density	32
		2.5.2	Central limit theorem	34
	2.6	Densi	ity of a transformation	35
	2.7		er-order statistics	36
		2.7.1	Kurtosis and classification of densitie	es 37
		2.7.2	Cumulants, moments, and their prope	erties 40
	2.8	Stoch	astic processes *	43
		2.8.1	Introduction and definition	43
		2.8.2		on 44
		2.8.3		46
		2.8.4	• •	48
		2.8.5	Power spectrum	49
		2.8.6	Stochastic signal models	49
	2.9	Conci	luding remarks and references	51
		Probl		51
3	Gra	dients a	nd Optimization Methods	57
	3.1	Vector	r and matrix gradients	57
		3.1.1	Vector gradient	57
		3.1.2	Matrix gradient	59
		3.1.3	Examples of gradients	59
Co	pyrigh	t ©2001	John Wiley & Sons vi	All rights reserved

		3.1.4	Taylor series expansions	61	
	3.2		ing rules for unconstrained optimization	62	
	5.2	3.2.1		62	
		3.2.2	Second-order learning	65	
		3.2.3	8	67	
		3.2.4		68	
		3.2.7	Convergence of stochastic on-line algorithms ⁵		
	33		ing rules for constrained optimization	72	
	5.5	3.3.1	The Lagrange method	73	
		3.3.2	Projection methods	73	
	3.4		uding remarks and references	75	
	5.7	Proble	0	75	
		11000	5115	75	
4	Estir	nation T	Theory	77	
	4.1	Basic	concepts	78	
	4.2	Prope	rties of estimators	80	
			od of moments	84	
	4.4	Least-	squares estimation	86	
		4.4.1	Linear least-squares method	86	
		4.4.2	Nonlinear and generalized least squares *	88	
	4.5	Maxin	num likelihood method	90	
	4.6	Bayes	ian estimation *	94	
		4.6.1	Minimum mean-square error estimator	94	
		4.6.2	Wiener filtering	96	
		4.6.3	Maximum a posteriori (MAP) estimator	97	
	4.7	Concl	uding remarks and references	99	
		Proble		101	
5	Information Theory				
	5.1	Entrop	-	105 105	
	011	5.1.1	Definition of entropy	105	
		5.1.2	<i>Entropy and coding length</i>	107	
		5.1.3	Differential entropy	108	
		5.1.4	Entropy of a transformation	109	
	5.2		l information	110	
		5.2.1	Definition using entropy	110	
		5.2.2	Definition using Kullback-Leibler divergence	110	
Co	pyrigh		John Wiley & Sons vii All rights re		

5.3	Maxir	num entropy	111
	5.3.1	Maximum entropy distributions	111
	5.3.2	Maximality property of gaussian distribution	112
5.4	Neger	ntropy	112
5.5	Appro	eximation of entropy by cumulants	113
	5.5.1	Polynomial density expansions	113
	5.5.2	Using expansions for entropy approximation	114
5.6	Appro	eximation of entropy by nonpolynomial functions	115
	5.6.1	Approximating the maximum entropy	116
	5.6.2	Choosing the nonpolynomial functions	117
	5.6.3	Simple special cases	118
	5.6.4	Illustration	119
5.7	Concl	uding remarks and references	120
	Probl	ems	120
	Apper	ıdix proofs	122

Independent Component Analysis

6	Principal Component Analysis and Whitening			125
	6.1	Prince	ipal components	125
		6.1.1	PCA by variance maximization	127
		6.1.2	PCA by minimum MSE compression	128
		6.1.3	Choosing the number of principal components	129
		6.1.4	Closed-form computation of PCA	131
	6.2	PCA l	by on-line learning	132
		6.2.1	The stochastic gradient ascent algorithm	133
		6.2.2	The subspace learning algorithm	134
		6.2.3	The PAST algorithm *	135
		6.2.4	PCA and back-propagation learning *	136
		6.2.5	Extensions of PCA to nonquadratic criteria *	137
	6.3	Facto	r analysis	138
	6.4	White	ning	140
	6.5	Ortho	gonalization	141
	6.6	Concl	uding remarks and references	143
		Probl	ems	144

Copyright ©2001 John Wiley & Sons viii

Part II BASIC INDEPENDENT COMPONENT ANALYSIS

7	Wha	t is Inde	ependent Component Analysis?	147
	7.1	Motiv	ation	147
	7.2	Defini	tion of independent component analysis	151
		7.2.1	ICA as estimation of a generative model	151
		7.2.2	Restrictions in ICA	152
		7.2.3	Ambiguities of ICA	153
		7.2.4	Centering the variables	154
	7.3	Illustr	ation of ICA	155
	7.4	ICA is	stronger that whitening	158
		7.4.1	Uncorrelatedness and whitening	158
		7.4.2	Whitening is only half ICA	159
	7.5	Why g	aussian variables are forbidden	160
	7.6		uding remarks and references	162
		Proble	ems	164
8	ICA	by Max	imization of Nongaussianity	165
	8.1	•	gaussian is independent"	166
	8.2		uring nongaussianity by kurtosis	171
		8.2.1	Extrema give independent components	171
		8.2.2	Gradient algorithm using kurtosis	177
		8.2.3	A fast fixed-point algorithm using kurtosis	178
		8.2.4	Examples	179
	8.3	Meası	iring nongaussianity by negentropy	181
		8.3.1	Critique of kurtosis	181
		8.3.2	Negentropy as nongaussianity measure	181
		8.3.3	Approximating negentropy	182
		8.3.4	Gradient algorithm using negentropy	184
		8.3.5	A fast fixed-point algorithm using negentropy	187
	8.4	Estime	ating several independent components	191
		8.4.1	Constraint of uncorrelatedness	191
		8.4.2	Deflationary orthogonalization	193
		8.4.3	Symmetric orthogonalization	193
	8.5		nd projection pursuit	196
		8.5.1	Searching for interesting directions	196
		8.5.2	Nongaussian is interesting	196
	8.6		uding remarks and references	197
Co	opyright ©2001 John Wiley & Sons ix All rights reserved			

	Problems	198
	Appendix proofs	200
9	ICA by Maximum Likelihood Estimation	203
-	9.1 The likelihood of the ICA model	203
	9.1.1 Deriving the likelihood	203
	9.1.2 Estimation of the densities	204
	9.2 Algorithms for maximum likelihood estimation	207
	9.2.1 Gradient algorithms	207
	9.2.2 A fast fixed-point algorithm	209
	9.3 The infomax principle	211
	9.4 Examples	213
	9.5 Concluding remarks and references	214
	Problems	218
	Appendix proofs	219
10	ICA by Minimization of Mutual Information	221
	10.1 Defining ICA by mutual information	221
	10.1.1 Information-theoretic concepts	221
	10.1.2 Mutual information as measure of dependence	e 222
	10.2 Mutual information and nongaussianity	223
	10.3 Mutual information and likelihood	224
	10.4 Algorithms for minimization of mutual information	224
	10.5 Examples	225
	10.6 Concluding remarks and references	225
	Problems	227
11	ICA by Tensorial Methods	229
	11.1 Definition of cumulant tensor	229
	11.2 Tensor eigenvalues give independent components	230
	11.3 Tensor decomposition by a power method	232
	11.4 Joint approximate diagonalization of eigenmatrices	233
	11.5 Weighted correlation matrix approach	234
	11.5.1 The FOBI algorithm	235
	11.5.2 From FOBI to JADE	235
		• • •
	11.6 Concluding remarks and references	236

12	ICA I	by Nonlinear Decorrelation and Nonlinear PCA	239			
	12.1	Nonlinear correlations and independence	240			
	12.2	The Hérault-Jutten algorithm	242			
	12.3	The Cichocki-Unbehauen algorithm	243			
	12.4	The estimating functions approach *	245			
	12.5	Equivariant adaptive separation via independence	247			
	12.6	Nonlinear principal components	248			
	12.7	The nonlinear PCA criterion and ICA	251			
	12.8	Learning rules for the nonlinear PCA criterion	254			
		12.8.1 The nonlinear subspace rule	254			
		12.8.2 Convergence of the nonlinear subspace rule	* 255			
		12.8.3 Nonlinear recursive least-squares rule	258			
	12.9	Concluding remarks and references	261			
		Problems	262			
13	Practical Considerations					
	13.1	Preprocessing by time filtering	263			
		13.1.1 Why time filtering is possible	264			
		13.1.2 Low-pass filtering	265			
		13.1.3 High-pass filtering and innovations	265			
		13.1.4 Optimal filtering	266			
	13.2	Preprocessing by PCA	267			
		13.2.1 Making the mixing matrix square	267			
		13.2.2 Reducing noise and preventing overlearning	268			
	13.3	How many components should be estimated?	269			
	13.4	Choice of algorithm	271			
	13.5	Concluding remarks and references	272			
		Problems	272			
14	Overview and Comparison of Basic ICA Methods					
	14.1	Objective functions vs. algorithms	273			
	14.2	Connections between ICA estimation principles	274			
		14.2.1 Similarities between estimation principles	274			
		14.2.2 Differences between estimation principles	275			
	14.3	Statistically optimal nonlinearities	276			
		14.3.1 Comparison of asymptotic variance *	276			
		14.3.2 Comparison of robustness *	277			
		14.3.3 Practical choice of nonlinearity	279			
Cop	Copyright ©2001 John Wiley & Sons xi All rights reserved					

Experimental comparison of ICA algorithms	280
14.4.1 Experimental set-up and algorithms	281
14.4.2 Results for simulated data	282
14.4.3 Comparisons with real-world data	286
References	286
Summary of basic ICA	287
Appendix Proofs	288
	 14.4.1 Experimental set-up and algorithms 14.4.2 Results for simulated data 14.4.3 Comparisons with real-world data References Summary of basic ICA

Part III EXTENSIONS AND RELATED METHODS

15	Noisy	ICA	293
	-	Definition	293
		Sensor noise vs. source noise	294
	15.3	Few noise sources	295
	15.4	Estimation of the mixing matrix	295
		15.4.1 Bias removal techniques	296
		15.4.2 Higher-order cumulant methods	298
		15.4.3 Maximum likelihood methods	299
	15.5	Estimation of the noise-free independent components	299
		15.5.1 Maximum a posteriori estimation	299
		15.5.2 Special case of shrinkage estimation	300
	15.6	Denoising by sparse code shrinkage	301
	15.7	Concluding remarks	304
16	ICA 1	vith Overcomplete Bases	305
	16.1	Estimation of the independent components	306
		16.1.1 Maximum likelihood estimation	306
		16.1.2 The case of supergaussian components	307
	16.2	Estimation of the mixing matrix	307
		16.2.1 Maximizing joint likelihood	307
		16.2.2 Maximizing likelihood approximations	308
		<i>16.2.3 Approximate estimation by quasiorthogonality</i>	309
		16.2.4 Other approaches	311
	16.3	Concluding remarks	313
Cop	oyright	©2001 John Wiley & Sons xii All rights res	served

17 Nonlinear ICA 31	15
17.1 Nonlinear ICA and BSS 31	15
17.1.1 The nonlinear ICA and BSS problems 3.	15
17.1.2 Existence and uniqueness of nonlinear ICA 31	17
17.2 Separation of post-nonlinear mixtures 31	19
17.3 Nonlinear BSS using self-organizing maps 32	20
17.4 A generative topographic mapping approach * 32	22
17.4.1 Background 32	22
17.4.2 The modified GTM method 32	23
17.4.3 An experiment 32	26
17.5 An ensemble learning approach to nonlinear BSS 32	28
17.5.1 Ensemble learning 32	28
17.5.2 Model structure 32	29
17.5.3 Computing Kullback-Leibler cost function * 33	30
17.5.4 Learning procedure * 33	31
17.5.5 Experimental results 33	32
17.6 Other approaches 33	37
17.7 Concluding remarks 33	39

18	Meth	ods using Time Structure	341
	18.1	Separation by autocovariances	342
		18.1.1 An alternative to nongaussianity	342
		18.1.2 Using one time lag	343
		18.1.3 Extension to several time lags	344
	18.2	Separation by nonstationarity of variances	346
		18.2.1 Using local autocorrelations	347
		18.2.2 Using cross-cumulants	348
	18.3	Separation principles unified	351
		18.3.1 Comparison of separation principles	351
		18.3.2 Kolmogoroff complexity as unifying framework	352
	18.4	Concluding remarks	353

Copyright ©2001 John Wiley & Sons xiii

19 Convolutive Mixtures and Blind Deconvolution	355
19.1 Blind deconvolution	356
19.1.1 Problem definition	356
19.1.2 Bussgang methods	357
19.1.3 Cumulant-based methods	358
19.1.4 Blind deconvolution using linear ICA	360
19.2 Blind separation of convolutive mixtures	361
19.2.1 The convolutive BSS problem	361
19.2.2 Reformulation as ordinary ICA	363
19.2.3 Natural gradient methods	364
19.2.4 Fourier transform methods	365
19.2.5 Spatiotemporal decorrelation methods	366
19.2.6 Other methods for convolutive mixtures	367
19.3 Concluding remarks	368
Appendix Discrete-time filters and the z-transform	368

20	Other Extensions		371	
	20.1	Priors	on the mixing matrix	371
		20.1.1	Motivation for prior information	371
		20.1.2	Classic priors	372
		20.1.3	Sparse priors	374
		20.1.4	Spatiotemporal ICA	377
	20.2	Relaxi	ng the independence assumption	378
		20.2.1	Multidimensional ICA	379
		20.2.2	Independent subspace analysis	380
		20.2.3	Topographic ICA	381
20.3 Complex-valued data		383		
		20.3.1	Basic concepts of complex random variables	383
		20.3.2	Indeterminacy of the independent components	384
		20.3.3	Choice of the nongaussianity measure	385
		20.3.4	Consistency of estimator	385
		20.3.5	Fixed-point algorithm	386
		20.3.6	Relation to independent subspaces	386
	20.4	Concli	uding remarks	387

Copyright ©2001 John Wiley & Sons xiv

Part IV APPLICATIONS OF ICA

21	Feati	<i>ire Extraction by ICA</i>	391	
	21.1	Linear representations	392	
		21.1.1 Definition	392	
		21.1.2 Gabor analysis	392	
		21.1.3 Wavelets	394	
	21.2	ICA and Sparse Coding	396	
	21.3	Estimating ICA bases from images	397	
	21.4	Image denoising by sparse code shrinkage	<i>39</i> 8	
		21.4.1 Component statistics	<i>39</i> 8	
		21.4.2 Remarks on windowing	400	
		21.4.3 Denoising results	401	
	21.5	Independent subspaces and topographic ICA	401	
	21.6	Neurophysiological connections	403	
	21.7	Concluding remarks	405	
22	Brair	n Imaging Applications	407	
	22.1	Electro- and magnetoencephalography	407	
		22.1.1 Classes of brain imaging techniques	407	
		22.1.2 Measuring electric activity in the brain	408	
		22.1.3 Validity of the basic ICA model	409	
	22.2	Artifact identification from EEG and MEG	410	
	22.3	Analysis of evoked magnetic fields	411	
	22.4	ICA applied on other measurement techniques	413	
	22.5	Concluding remarks	414	
23	Telecommunications			
	23.1	Multiuser detection and CDMA communications	417	
	23.2	CDMA signal model and ICA	422	
	23.3	Estimating fading channels	424	
		23.3.1 Minimization of complexity	424	
		23.3.2 Channel estimation *	426	
		23.3.3 Comparisons and discussion	428	
	23.4	Blind separation of convolved CDMA mixtures *	430	
		23.4.1 Feedback architecture	430	
		23.4.2 Semiblind separation method	431	
		23.4.3 Simulations and discussion	432	
~	• • •			

Copyright ©2001 John Wiley & Sons xv

Independent Component Analysis	Hyvärinen, Karhunen, Oja
23.5 Improving multiuser detec	tion using complex ICA * 434
23.5.1 Data model	435
23.5.2 ICA based receiver	rs 436
23.5.3 Simulation results	438
23.6 Concluding remarks and r	eferences 440
24 Other Applications	441
24.1 Financial applications	441
24.1.1 Finding hidden fac	tors in financial data 441
24.1.2 Time series predict	ion by ICA 443
24.2 Audio separation	446
24.3 Further applications	448
References	449

Copyright ©2001 John Wiley & Sons xvi