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Abstract. Combining classifiers is an effective way of improving classifi-
cation performance. In many situations it is possible to construct several
classifiers with different characteristics. Selecting the member classifiers
with the best individual performance can be shown to be suboptimal in
several cases, and hence there exists a need to attempt to find effective
member classifier selection methods. In this paper six selection criteria
are discussed and evaluated in the setting of combining classifiers for
isolated handwritten character recognition. A criterion focused on pe-
nalizing many classifiers making the same error, the exponential error
count, is found to be able to produce the best selections.

1 Introduction

In an attempt to improve recognition performance it is a common approach
to combine multiple classifiers in a committee formation. This is feasible if the
outputs of several classifiers contain exclusive information. Often the focus of
the research is on methods for combining the classifiers in the most effective
manner, but it should not be forgotten that the committee’s performance is
highly dependent on the member classifiers used. In fact these two fundamental
aspects in committee performance enhancement are often referred to as decision
optimization and coverage optimization [1].

Instead of selecting member classifiers based solely on their accuracy, it may
often be more effective to attempt to select the members based on their diversity,
for which several measures have been presented [2–4]. Measuring the diversity
of the member classifiers is by no means trivial, and there is a trade-off between
diversity and member accuracy. Standard statistics do not take into account
that for classification purposes a situation where identical correct answers are
given differs greatly from the situation where identical erroneous answers are
suggested, with the former being generally the best case and the latter the worst.
For classification purposes it may be useful to examine especially the errors made.

Here six approaches to deciding on what subset of a larger set of member
classifiers to use are examined. Three very different committee structures are
briefly explained and used for evaluation with application to handwritten char-
acter recognition. Due to space constraints, readers are directed to the references
for more thorough discussion on each member classifier and committee method.



2 Member Classifier Selection Criteria

Six different criteria for member classifier selection are presented here. The first
three criteria are more traditional and have been gathered from literature. The
latter three are novel and they have been designed based on the assumption of
the significance of the classification errors being made. All except one of the
presented approaches work in a pairwise fashion, where the result for a larger
set is the mean of the pairwise measures for that set. The exception is the
exponential error count in section 2.6, which compares all classifiers in the set
simultaneously. As the minimum of the pairwise measures is always smaller or
equal to the mean, the pairwise criteria are not suitable for selecting the size k

of the classifier subset C1, . . . , Ck from all of the K available classifiers. Hence
it is assumed in all cases that the number of classifiers to be used is fixed in
advance.

2.1 Correlation Between Errors

As it is reasonable to expect that the independence of occurring errors should be
beneficial for classifier combining, the correlation of the errors for the member
classifiers is a natural choice for comparing the subsets of classifiers. Here the
correlation ρa,b for the binary vectors va

e and vb
e of error occurrence in classifiers

a and b respectively is calculated as

ρa,b =
Cov[va

e , vb
e]

√

Var[va
e ]Var[vb

e]
, (1)

where Cov refers to covariance and Var variance. The best set is selected by
choosing that with the minimal mean pairwise correlation.

2.2 Q Statistic

One statistic to assess the similarity of two classifiers is the Q statistic [2]. It is
defined for two classifiers a, b as

Qa,b =
N11N00 − N01N10

N11N00 + N01N10
, (2)

where N11 is the number of times both classifiers are correct, N00 the number of
times both classifiers are incorrect, and N10 and N01 the number of times when
just the first or second classifier is correct, respectively. When the classifiers
make just the same correct and incorrect decisions, it can be seen that the value
of the Q statistic becomes one. Negative values indicate classifiers that make
errors on different inputs. For sets of more than two classifiers the mean value
of the pairwise Q statistics is considered to be the Q value for that set. The best
subset of member classifiers is thus selected by minimizing the value of the Q

statistic.



2.3 Mutual Information

As was suggested in [3], also a diversity measure based on calculating the mu-
tual information of the classifiers results can establish a good set of member
classifiers, as it by definition measures the amount of information shared be-
tween the classifiers. Hence minimizing the mutual information should produce
a maximally diverse set of classifiers. The mutual information can be used for a
measure of closeness and the pairwise mutual information between two classifiers
a and b can be calculated as

Ia,b =

n
∑

i=1

n
∑

j=1

p(ci, cj) log
p(ci, cj)

pa(ci)pb(cj)
, (3)

where n is the total number of classes and ci, i = 1, . . . , n are the class labels.
In the experiments also the mutual information of the error occurrences has

been calculated. There only two classes, correct or incorrect, are considered for
each classifier. Both mutual information measures should be minimized to select
the optimal subset of classifiers, again using the mean of the pairwise values for
a larger set of classifiers.

2.4 Ratio Between Different and Same Errors

The worst possible setting for classifier combination is the situation where several
classifiers agree on an incorrect result, and it is not nearly as fatal if they make
errors to different labels. To explore this let us denote the count of how many
times two classifiers made different errors at the same sample with N00

different
and

the count of how many times both classifiers made the same error with N00
same.

Now we can examine the ratio

rDSE
a,b =

N00

different

N00
same

. (4)

Again for more than two members the mean of the pairwise ratios is used.
The best subset of classifiers can be selected through maximizing this ratio.

2.5 Weighted Count of Errors and Correct Results

One should consider taking into account information on also correct decisions
in addition to the incorrect results, with more emphasis placed on the situation
where classifiers agree on either the correct or incorrect result. One may simply
count the occurrences of the situations and place suitable emphasis on the “both
correct”, a positive situation, and “both same incorrect”, a negative situation:

rWCEC
a,b = N11 +

1

2
(N01 + N10) − N00

different − 5N00

same . (5)

The weighting is arbitrary, and the presented values have been chosen as they
are deemed suitable based on the reasoning to penalize errors, and especially
same errors. For multiple classifiers, the mean of the pairwise counts is used.
The optimal subset can be selected by maximizing the measure.



2.6 Exponential Error Count

As it is assumed that the member classifiers will hinder the classification the
most when they agree on the same incorrect result, that situation can be given
even more emphasis in the selection criterion. The errors can be counted and
weighted by the number of classifiers making the error in an exponential fashion.
The count of errors made by a total of i classifiers is denoted N0

i same
and added

to the sum after rising to the ith power, or

rEXP
C1,...,Ck

=

∑k

i=1
(N0

i same
)i

N1

all

. (6)

This measure considers all member classifiers of the set at the same time,
and the best combination is selected by minimizing the measure. Here also the
correct classifications are taken into account by scaling the result with N1

all
, the

number of samples for which every member classifier was correct.
It should be noted that more than one N0

i same
can be increased while process-

ing one sample – if m classifiers agree on one erroneous result and n classifiers
on another, both N0

m same and N0
n same are increased.

3 Committee Methods

Three quite different combination methods are used to evaluate the member clas-
sifier selection criteria. The plurality voting committee is a very simple method,
while the Behavior-Knowledge Space (BKS) method [5] uses a separate training
phase. As our experiments have focused on adaptive committee classifiers, also
the run-time adaptive Dynamically Expanding Context (DEC) committee [6] is
used for evaluation. For default decisions in the BKS and DEC methods, ie. for
the situations where no rules yet exist, all member classifiers had been run on
an evaluation set and ranked in the order of decreasing performance.

3.1 Plurality Voting Committee

The committee classifier simply uses the plurality voting rule to decide the out-
put of the committee. This basic committee structure has been included because
of its widespread use and familiar behavior.

3.2 BKS Committee

The Behavior-Knowledge Space (BKS) method [5] is based on a K-dimensional
discrete space that is used to determine the class labels, with each dimension
corresponding to the decision of one classifier. The result is obtained by first
finding the focal unit in the K-dimensional space, the unit which is the inter-
section of the classifiers’ decisions of the current input. Then if the unit has
gathered samples and for some class c the ratio between the number of samples
for class c and all gathered samples is above a threshold, class c is selected.



In the training phase the focal unit had collected the count of recognitions
and counts for each true class. The output of the committee was the class with
the highest probability in the focal unit, the one that had received most samples,
as suggested in [5]. If the focal unit had not received any samples, the default
rule of using the highest-ranking single classifier’s result was used.

3.3 DEC Committee

The adaptive committee used is based on the Dynamically Expanding Context
(DEC) algorithm [7]. The DEC principle had to be slightly modified to suit the
setting of combining classifiers [6]. For this setting, a list of member classifiers’
results is taken as a one-sided context for the first member classifier’s result.
The classifiers are used in the order of decreasing performance. To correct errors
transformation rules consisting of a list of member classifier results as the inputs
and the desired recognition result as the output are generated. Only rules whose
output is included in the inputs may be produced.

Each time a character is input to the system, the existing rules are first
searched through and the most specific applicable rule is used. If no applicable
rule is found, the default decision is applied. For these experiments the default
decision was taken to be a plurality voting decision among all member classifiers.

The classification result is compared to the correct class. If the recognition
was incorrect, a new rule is created. The created rule always employs the minimal
amount of context, ie. member classifier results, sufficient to distinguish it from
existing rules. To make the rules distinguishable every new rule employs more
contextual knowledge, if possible, than the rule causing its creation. Eventually
the entire context available will be used and more precise rules can no longer
be written. In such situations selection among multiple rules is performed via
tracking correctness of the rules’ usage.

4 Data and Member Classifiers

The data used in the experiments were isolated on-line characters in three sep-
arate databases. The preprocessing is covered in detail in [8]. Database 1 con-
sists of 10403 characters written by 22 writers without any visual feedback.
Databases 2 and 3 were collected with the pen trace shown on-screen and char-
acters recognized on-line, with also the recognition results being shown. They
contain 8046 and 8077 character samples, respectively, both written by eight
different writers. All databases featured 68 character classes.

Database 1 was used solely for member classifier construction and training.
Database 2 was used for training the BKS, the only committee method used
requiring a separate training phase, and database 3 was used as a test set.
The adaptive DEC committee performs run-time adaptation and creates writer-
dependent rules during classification. The DEC committee was not trained be-
forehand in any way. For all member classifiers the sizes of the characters were
scaled so that the the longer side of their bounding box was constant and the



Table 1. Member classifier performance

Classifier index Member classifier Error rate Classifier rank

1 DTW PL Bounding box 23.06 4
2 DTW PL Mass center 20.02 2
3 DTW PP Bounding box 21.16 3
4 DTW PP Mass center 19.30 1
5 Point-sequence SVM 23.93 5
6 Grid SVM 26.49 6
7 Point-sequence NN 50.22 8
8 Grid NN 35.74 7

aspect ratio was kept unchanged. The accuracies of the individual member clas-
sifiers to be described below have been gathered into table 1.

4.1 DTW Member Classifiers

Four individual classifiers were based on stroke-by-stroke distances between the
given character and the prototypes. Dynamic Time Warping (DTW) [9] was used
to compute one of two distances, point-to-line (PL) or point-to-point (PP) [8]. In
the PL distance the points of a stroke are matched to lines interpolated between
the successive points of the opposite stroke. The PP distance uses the squared
Euclidean distance between two data points as the cost function. The second
variation was the use of either the ’Mass center’ as the input sample’s mass
center or by ’Bounding box’ as the center of the sample’s bounding box, for
defining the characters centers, thus creating four combinations. Database 1 was
used for constructing the initial user-independent prototype set which consisted
of 7 prototypes for each class.

4.2 SVM Member Classifiers

Two member classifiers based on Support Vector Machines (SVMs) were also
included. The support vector machine classifiers were implemented using the
libsvm version 2.36 SVM package [10]. The routines were slightly modified to
accommodate the data used and to return a more information, but the classi-
fication and training routines were directly from the toolbox. Database 1 was
used for training the SVM models.

The first of the SVM member classifiers takes its data as a list of points from
the character. For this classifier, first the strokes of the characters are joined
by appending all strokes to the first one. Then the one-stroked characters are
transformed via interpolation or decimation to have a fixed number of points,
for these experiments the point number was set to 30. Then the x and y coordi-
nates of each point were concatenated to form a 60 dimensional vector of point
coordinates, which were then used as data for the SVM classifier.



The second SVM member classifier takes a feature vector of values calculated
from a grid representation of the character. For this classifier, a grid was formed
and 17 values were calculated for each grid cell. These values include the sums
of both negative and positive sin and cos of the slope of the line between the
current and next point, the neighboring 8-neighborhood grid location the stroke
moves from this location, the count of points in the cell and the count of pen-ups
in the cell and character-wise means of these. A 3 × 3 grid was found to be the
most promising of those tested (3× 3, 5× 5, 7× 7, 10× 10), and resulted in 153
dimensional data vectors.

4.3 NN Member Classifiers

Two member classifiers based on neural networks (NNs) were used. A fully con-
nected feed-forward network structure was created using the Stuttgart Neural
Network Simulator (SNNS) version 4.2 [11]. Database 1 was used for training.

The first NN classifier used the same preprocessing and feature vector type as
the first SVM classifier, the coordinates of the one-stroke fixed-length characters
were concatenated to form a 60 dimensional input vector. The number of output
neurons was determined by the number of classes in the data, 68. A network
using one hidden layer consisting of 100 neurons was used with 5000 epochs of
training with the BackpropMomentum [11] learning algorithm.

The second NN used the grid-based approach with the same features as the
second SVM classifier. Here a 5 × 5 grid was used resulting in 425 dimensional
data. A network with two hidden layers of 100 neurons each and 68 output
neurons was trained with the BackpropMomentum method for 1000 epochs.

5 Results

It can be seen in table 1 that the DTW-based classifiers are all better in individ-
ual performance than the other methods here. This stems from the fact that our
own custom DTW classifier has been tuned for a prolonged period of time, while
the other member classifiers were created from existing toolkits without nearly
as much effort. Especially the performance of the point-sequence NN classifier is
in itself unacceptable, but was included to examine the effect of a significantly
worse but different member classifier.

The experiments were run using a fixed member classifiers set size of k = 4
member classifiers. The best combinations from all eight possible member classi-
fiers produced by the selection criteria and the resulting accuracies from the three
committee structures used for evaluation have been gathered into table 2. Also
results using the four individually best member classifiers have been included
as ’Best individual rates’. The three best results for each combination method
using the brute force approach of going through all 70 possible combinations
with each decision method have been collected into table 3.

In this case the correlation, Q statistic, and mutual information or errors mea-
sure selected exactly the same set of member classifiers, which is not surprising



Table 2. Comparison of selection criteria

Criterion Members Vote BKS DEC

Correlation 4,6,7,8 18.64 18.23 14.80
Q statistic 4,6,7,8 18.64 18.23 14.80
Mutual information 5,6,7,8 20.70 21.50 18.11
Mutual information of errors 4,6,7,8 18.64 18.23 14.80
Ratio between diff. and same errors 1,6,7,8 20.39 20.68 16.55
Weighted count of correct and err. 1,4,5,6 18.34 20.32 14.53
Exponential error count 4,5,6,8 16.45 18.13 14.12

Best individual rates 1,2,3,4 19.34 20.07 18.17

Table 3. Best brute force results

Best Second best Third best

Method Members Errors Members Errors Members Errors

Vote 4,5,6,8 16.45 2,5,6,8 16.66 3,5,6,8 17.14
BKS 2,3,4,7 17.46 2,3,6,8 17.83 3,4,6,8 17.85
DEC 4,5,6,8 14.12 2,5,6,8 14.44 4,5,6,7 14.49

considering their similar nature. The mutual information measure selected the
worst performing classifiers. These criteria do not take into account the differ-
ence between errors and correct results – it is beneficial when members agree
on correct results, but not when they agree on errors. All these criteria selected
also the worst-performing point-sequence NN member classifier, which is not
surprising considering its less similar, albeit due to numerous errors, results.

The approach of comparing the ratios between different and same errors does
not perform well, providing the second-worst results. Also this criterion uses the
clearly worst point-sequence NN classifier. The weighted count of errors and
correct results criterion provides a combination that is second best for both the
voting and DEC committees but notably poor for the BKS committee.

The exponential error count approach finds the best selection of all criteria
in table 2. As can be seen in table 3, this criterion found the best combination
of classifiers for this given task with respect to both the voting and DEC com-
mittees. This is in accordance with the initial assumption of the importance of
the classifiers not making exactly the same mistakes too often.

An interesting difference of behavior can be noted with the BKS in com-
parison to the two other combination methods. The best member classifier set
from table 3 for BKS is {2, 3, 4, 7}, the three members with the best individual
accuracies and one with the worst. Presumably the different behavior is at least
partly due to the fact that the separate training phase teaches the committee
the types of errors that commonly occur. Hence the overall diversity of the set
becomes a less important factor and the effects of the training weigh more on
the final result when using a separate training phase. Also with the voting and



Table 4. Comparison of selection criteria without member classifier 7

Criterion Members Vote BKS DEC

Correlation 4,5,6,8 16.45 18.13 14.12
Q statistic 4,5,6,8 16.45 18.13 14.12
Mutual information 1,5,6,8 17.75 19.82 15.04
Mutual information of errors 4,5,6,8 16.45 18.13 14.12
Ratio between diff. and same errors 2,4,6,8 18.57 18.11 14.53
Weighted count of correct and err. 1,4,5,6 18.34 20.32 14.53
Exponential error count 4,5,6,8 16.45 18.13 14.12

Best individual rates 1,2,3,4 19.34 20.07 18.17

DEC approaches, the third-best combination was different, so clearly the optimal
selection of member classifiers is also dependent on the combination method.

To evaluate the effect of just the one poorly performing, albeit diverse, clas-
sifier an additional experiment was run without using the point-sequence NN.
The results are presented in table 4. It can be seen that the performance of the
first five member selection criteria is greatly improved. Still the very simple ratio
between different and same errors is clearly not sufficient for selecting a member
classifier set here, when the results of all methods but the BKS are compared.
But the correlation, Q statistic, and mutual information of errors criteria, who
are still in agreement on the best selection of members, are now able to find the
combination that produces the best results with the voting and DEC commit-
tees. Hence it may be a logical conclusion that these criteria are less robust with
regard to member classifiers making a large number of errors.

6 Conclusions

Several member classifier selection criteria were examined, including statistical,
information-theoretic and error counting measures. It appears that the more
general criteria may be suboptimal for the specific case of classifier combining,
especially when also poorly performing classifiers are included. When combining
classifiers it would seem that the most important factor is that the classifiers as
rarely as possible make exactly same mistakes, as these situations are the most
difficult for the combining methods to anticipate. But it is also important that
the member classifiers perform well. The best trade-off between accuracy and di-
versity was obtained with the suggested exponential error count criterion, which
weighs identical errors made by the classifiers in an exponential fashion and
normalizes the count with the number of cases where all members were correct.
This method also showed robustness with respect to a very poorly performing
member classifier.

One may ask what benefit there is in using a diversity measure instead of
the decision mechanism directly when examining all subsets of classifiers. If it is
possible to form a diversity measure for any subset from the pairwise diversity



measures of its members, noticeable computational benefits can be obtained.
This is because going through all combinations of two classifiers results in signif-
icantly fewer possibilities than all combinations of a larger number of classifiers.
For example in the presented experiments, with the subset size of 4 member clas-
sifiers from a total of 8 classifiers, the advantage is 28 vs. 70 combinations. The
cost of forming the diversity measure of a subset from that of the pairs by aver-
aging is insignificant. Naturally with very large numbers of member classifiers,
a more evolved search scheme is necessary [4].

Still, if the objective is to optimize both the member classifier set and the
decision method, the possibility of using a more general measure for the member
classifier set selection should be considered. This may help refrain from excessive
iteration of the two phases of optimization. But it must not be forgotten that the
selection of member classifiers is dependent on the combination methods char-
acteristics, a fact also concluded in [12] among others. A particular combination
of classifiers, while optimal in some sense, does not guarantee the best results for
all combination methods. However, a suitable measure may still provide some
generalizational ability. Here the exponential error count has been shown to find
a selection that consistently provides good results in the presented experiments.
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