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Abstract. When combining classifiers in order to improve the classi-
fication accuracy, precise estimation of the reliability of each member
classifier can be very beneficial. One approach for estimating how con-
fident we can be in the member classifiers’ results being correct is to
use specialized critics to evaluate the classifiers’ performances. We intro-
duce an adaptive, critic-based confidence evaluation scheme, where each
critic can not only learn from the behavior of its respective classifier,
but also strives to be robust with respect to changes in its classifier.
This is accomplished via creating distribution models constructed from
the classifier’s stored output decisions, and weighting them in a manner
that attempts to bring robustness toward changes in the classifier’s be-
havior. Experiments with handwritten character classification showing
promising results are presented to support the proposed approach.

1 Introduction

In an attempt to improve pattern recognition performance, several approaches
can be taken. One approach often found beneficial is to combine the results of
several classifiers in the hope that the combination will outperform its members.
The basic operation of a committee classifier is to take the outputs of a set of
member classifiers and attempt to combine them in a way that improves ac-
curacy. As a committee merely combines the results produced by its members,
the member classifiers have a significant effect on the performance. The member
classifiers’ two most important features that affect the committee’s performance
are (i) their individual error rates, and (ii) the correlatedness of the errors be-
tween the members. The more different the mistakes made by the classifiers are,
the more beneficial the combination of the classifiers can be [1].

In order to combine the results as effectively as possible, one approach is to
obtain some measure of how confident we can be that a classifier is making a
correct prediction. Therefore, for combining classifiers in an intelligent way, it
would obviously be beneficial to be able to estimate the reliability of each clas-
sifier in an accurate fashion. One way of accomplishing this is to use a separate
classification unit to decide whether the classifier is correct or not. Schemes with



separate experts for evaluating the classifiers’ reliability are often called critic-
driven models, as each classifier can be assigned a critic that provides a measure
of confidence in the classifier’s decisions. Critics themselves are specialized clas-
sifiers providing an estimate of how likely it is expected that the classifier in
question is correct. This prediction can be made based either only on the output
of the classifier or also on its inputs.

In pattern recognition the problem is basically to estimate the posterior prob-
abilities of the classes for a given input sample and to choose the class most
probably correct. However, estimating the true posterior probabilities is far from
simple in many cases, for example when using prototype-based classifiers. The
critic-driven approach is one method of attempting to produce accurate esti-
mates on how likely the classifiers are to be correct and thus which label should
be chosen. Also, it may be necessary to combine different types of classifiers, and
thus it is advantageous to pose as few requirements for the classifiers as possible.

Critic-driven approaches to classifier combining have been investigated pre-
viously, e.g. in a situation where the critic makes its decision based on the same
input data as the classifier [2] and in a case where scaling schemes and activa-
tion functions for critics were examined [3]. Most critic-driven schemes are static
in the sense that they have no memory of previous input samples. In general,
however, a classifier’s performance tends to be similar in similar situations, for
example for samples belonging to the same class. It could thus be beneficial to
take advantage of this by incorporating also information on the classifier’s prior
performance into the critic.

Conversely, also the classifier’s performance may change in time — for example
in the case of handwriting recognition the writer’s style may change due to a
different situation or we may encounter an entirely new writer. Therefore the
critic scheme should be capable of robustness also under changing conditions,
a trait somewhat suppressed by the desire to use all collected information for
the predictions. Thus it should be advantageous to find a balance between the
impact of the older and the more recent samples. In this paper, we propose an
approach where information on the classifier’s prior performance is used for the
critic’s decisions while incorporating a weighting scheme to focus on the most
recent samples in order to improve the robustness.

2 Adaptive Class-Wise Confidences

In most critic-driven schemes the critic bases its decisions on only the cur-
rent sample and the member classifiers’ outputs. However, the approach pre-
sented in this paper is based on our Class-Confidence Critic Combining (CCCC)
scheme [4], a model that attempts to learn continuously from the behavior of
the critic’s associated classifier. Each critic gives its estimate on the classifier’s
accuracy based not only on the classifier’s output to the sample at hand, but also
the classifier’s prior performance in similar situations. This enables the critic to
adapt to the performance of the particular classifier it has been assigned to.



Learning the classifier’s performance will inevitably also make the critic less
robust to changes in the classifier’s behavior, as its evaluations are now by defini-
tion based also on the collected knowledge on the classifier’s prior performance.
To counter this, we in this paper expand the CCCC model further by introducing
weighting schemes to make the critics emphasize the most recent inputs. The
original model is also modified to produce confidence estimates for all classes
from each classifier for each input sample. The output of the combiner is then
selected from this array of confidences using one of the standard methods to be
presented in Section 2.5.

2.1 The Proposed Approach

In this paper we use prototype-based classifiers that calculate the input’s dis-
tance from the nearest prototype of each class. Each member classifier produces
a vector of distances, with one distance for each class, where a smaller distance
indicates a better match. These distances are stored in the critics which attempt
to model the distances’ distributions. Based on the current and modeled prior
distances for the same class, a confidence value is calculated by the critic. These
values are then used in deciding the committee’s final output. If the classifier is
not based on distances, any measure that decreases as similarity increases can be
used, or a native confidence-measure may be transformed into a distance for the
distribution estimates. For example, if we have a confidence measure ¢t € [0, 1],
we may simply use 1 — t as the distance.

Each time a new input sample is processed, it is classified by all member clas-
sifiers who calculate the smallest distance to each class. Each classifier’s critic
then produces an estimate on that classifier’s correctness based on the classi-
fier’s prior behavior for the same class and that particular input’s normalized
distances. The final output of the committee is decided from the classifier out-
puts and confidences obtained from the critics by using one of the combination
rules discussed below. After the correctness of the classification has been estab-
lished, the input is incorporated into the respective critic’s distribution model
to refine the estimate of the input data distribution. Additionally, weights are
used for the distance values stored in the distribution models and adjusted in
order to strive for more robust behavior with respect to changes in the classifier’s
performance.

2.2 Normalizing Distance Values Obtained from Classifiers

As such the distances produced by the member classifiers can be over a wide
range of numerical values and have no confidence interpretation on their own.
The distances computed in the classifiers may be normalized as follows.

Let there be K classifiers each calculating some type of distances and deciding
its output based on minimizing that distance measure. Let there be C' pattern
classes. Fach classifier may have p > C' prototypes to which the distance is
calculated, but at least one prototype for each class. Now let x be the input
sample, k the classifier index, k € [1,..., K], and ¢ the class index, ¢ € [1,...,C].



From each classifier for each input we may find the shortest distance to the
nearest prototype of each class, d*(z) € [0, oo].

In practice the classifiers should not produce an infinite distance if matching
to any prototype of that class is possible. But for example in the stroke-based
handwritten character classifiers used in the experiments presented in this paper,
the distance is defined to be infinite if the number of strokes is different in the
input and the prototype. Thus also the case of infinite distance should be taken
into account. We can now define normalized distances to be used in the critics’
distributions as
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d*(z) used in the summation equals d¥(z) if d*(z) is finite and is otherwise
zero. However, if the distance to only one class is finite, the normalized distance
for that class is defined to be zero. If the distances are close to another, ¢*(x)
becomes relatively large, but if the distance to the nearest prototype is much
smaller than the others, the normalized value is notably smaller for that class.
If the prototype matches the input sample exactly, also the normalized distance
equals zero.

2.3 Distribution Types

In order to obtain confidences for decisions on previously unseen x, the values
¢*(z) must be modeled somehow. The approach of gathering previous values into
distribution models from which the value for the confidence can be obtained as
a function of ¢¥(x) has been chosen for this task.

One key point in the effectiveness of a scheme based on confidence values
calculated from distribution models is in the ease of creating and modifying
the models. The amount of data that is obtained from each distribution is quite
limited, and in a real situation may vary greatly between distributions due to the
fact that some classes occur more frequently than others. The methods should
therefore be capable of producing reliable estimates even with small amounts of
data. Kernel-based distribution estimates fulfill these requirements and two such
schemes have been experimented with and are explained below.

Let us first shorten the notation by using z = ¢¥(x). The confidence obtained
from the distribution i then stands as p(¢*(z)) = p’(z). The distribution model
1 contains IV; previously collected values zji-, j=1,...,N;. The weight assigned
to each sample of the critic is denoted with wl(z;) The distribution index % runs
over the distributions for each class ¢ in each member classifier k.

Triangular kernel distribution model estimate: This distribution esti-
mate uses a triangular kernel function,
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defined by the kernel bandwidth b, which is given as a parameter.

Gaussian kernel distribution model estimate: The distribution is esti-
mated with a Gaussian function as the kernel. The kernel bandwidth b is used
as the variance for the Gaussian.
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Both distribution models are initialized so that while no data points have
been collected, the confidence is evaluated as if one value of zero distance had
been obtained. The kernel bandwidth b is optimized from the training data.

2.4 Adapting the Critics

It is assumed that information on the correctness of earlier decisions can be
obtained and is available for adapting the critics. The first phase of adaptation
is the modification of the distribution models. The ¢*(z) values received from the
member classifiers are incorporated into the corresponding critic’s distribution
model if the classifier was correct. In practice this is done by appending the new
q*(z) value to the list of values for that distribution model.

Additionally, a weight is assigned with each distance value stored in the
critic’s distribution model to facilitate emphasizing newer inputs. For the sec-
ond phase of adaptation, the weights will be modified to obtain more robust
behavior. Three approaches to adjusting the weights of the sample points have
been experimented with, and a constant weighting scheme is used for reference.

Constant weights: The weight for each sample is constant, w;(z%) = 1

J
for all z; Weighting the samples equally is used as a reference to examine the
benefits of the proposed true weighting schemes.

Class-independent weights: The weights are initially set in an increasing
order by using an increasing counter (sample index) n(z}) scaled with a suitable
constant. If known beforehand, the total number of test samples IV can be used

for the scaling factor to obtain the weights

wi() = 22 (@)

These weights do not depend on the distribution model the sample is inserted
into, so within each distribution there can be large differences in the weights.
Class-dependent weights: For each distribution, the weights are scaled
linearly every time a new sample is inserted. As a result, each sample has weight
equal to the ratio of its index m;(z]) in that particular distribution model and
the total number of samples in that model, N;,

K2

()

This results in the first sample having the smallest weight of 1/N; and the most
recent sample having the weight N;/N; = 1.



Decaying weights: When a new sample is inserted to the distribution
model, the weights are recalculated to decrease in accordance with a decay con-
stant A so that . ‘

w;(z]) = max{0, 1 — A(N; —n;(2}))}. (6)
Effectively the inverse of the decay constant A states how many previous samples
the distribution “remembers” at any given time point, with the newest samples

being given the most weight.

2.5 Final Confidence and Decision Mechanisms

As the committee now has label information from the member classifiers and
the corresponding confidence values from the critics to work with, a scheme is
needed for combining them into the final result. The output of the committee is
the label of the class that it decides the input most likely belongs to. This label
should be deduced from the available information in an optimal manner.

The overall confidence u¥(z) given by the critic £ for the input x belonging
to class c¢ is obtained from the corresponding distribution model by weighting
the confidence estimate with a running evaluation of the classifiers’ overall cor-
rectness rate. This rate p(classifier k correct) is obtained by tracking how many
times classifier k£ has been correct so far and dividing that by the total number
of samples classified. Hence the overall confidence is

F(z) = pF(¢"(x)) - p(classifier k correct). (7)

U

For the input sample x the decision schemes take the confidences in each
label u¥(z) from the critics and attempt to form the best possible decision. As
the decision mechanisms, especially in the beginning, do not have very much
information to work on, a default rule is needed. The default rule here is to
use the result of the classifier ranked to be the best on the member validation
database. This default rule is applied if no critic suggests a result or several
results have exactly the same confidence value.

The effectiveness of the decision scheme is naturally a very important factor
in the overall performance of a classifier combination method. It has been often
found that in a setting where confidences for all labels can be obtained and
the most likely one should be chosen, four basic ways of combining confidences,
the sum, product, min and max rules, can be very effective in spite of their
simplicity [5]. Also in this work these decision schemes are used.

Product rule: For each label, the confidences of the critics are multiplied
together, and then the label with the greatest total confidence is chosen,

K
c(x) = arg rjngilx kl;[l uf (). (8)

Sum rule: For each label, the confidences of the critics are summed together,
and then the label with the largest resulting confidence is selected,

K
c(x) = arg I§1zaf( Z uf (x). (9)
k=1



Min rule: For each label, the smallest confidence from a critic is discovered,
and then the label with the largest minimum confidence is chosen,

(& K k
c(r) = arg maxmin uj(z). (10)
j=1 k=1
Max rule: For each label, the largest confidence from a critic is discovered,
and then the label with the largest maximum confidence is selected,

c
c(x) = argmax max uf(x) (11)
j=1 k=1

2.6 An Example of the Committee’s Operation

In order to illustrate the operation of the combination scheme, let us review an
example. In this example we shall use the triangular kernel distribution model
estimate and the sum rule for determining the final output, and modify the
weights according to the decaying weights scheme. Now let there be K classifiers
and C' classes.

For the input sample x each classifier k& outputs C' values d¥(z), with each
value corresponding to the distance to the nearest prototype of class c in classifier
k. Then this batch of distances is normalized as in equation (1) to obtain again
C values ¢¥(x) for each classifier k =1,..., K.

Now the normalized distances are examined by the respective critics, who
calculate their confidence values from their distribution models of existing data
points as in equation (2). This results in a set of C' confidence values p¥ (¢ (z))
for every classifier. These confidence values are further adjusted in the critic
by weighting them with the respective classifier’s correct classification rate in
accordance with equation (7). The final output is then selected using the sum
rule of equation (9) from the final confidences u¥(z) obtained from the critics.

For updating the distributions it is assumed that information on the correct-
ness of the result can be obtained after the classification. Now for each of the K
classifiers and their respective critics, if that particular classifier was correct, the
normalized distance for the correct class is stored into that classifier’s critic’s
distribution model. Furthermore, the weight corresponding to each collected
normalized distance value in the distribution model is updated in accordance
to equation (6). After the distributions of all the classifiers that were correct
have been updated, the next input sample can be processed.

3 Experiments

The committee experiments were performed using a total of six different classi-
fiers. The used data was online handwritten characters written one-by-one. The
collection and preprocessing is covered in detail in [6]. All letters, upper and
lower case, and digits were used in the experiments.

The member classifiers were based on stroke-by-stroke distances between the
given character and prototypes. Dynamic Time Warping (DTW) was used to



Table 1. Recognition error rates of the member classifiers

Classifier Distance measure Accuracy

DTW-PP-MC 79.98%
DTW-PL-MC 79.22%
DTW-PP-BBC 78.82%
DTW-PL-BBC 77.72%
DTW-NPP-MC 79.17%
DTW-NPP-BBC  77.68%
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compute one of three distances, the point-to-point (PP), the normalized point-to-
point (NPP), or point-to-line (PL) [6]. The PP distance simply uses the squared
Euclidean distance between two data points as the cost function. In the NPP
distance the distances are normalized by the number of matchings performed. In
the PL distance the points of a stroke are matched to lines interpolated between
the successive points of the opposite stroke.

All character samples were scaled so that the length of the longer side of
their bounding box was normalized and the aspect ratio kept unchanged. The
centers of the characters were moved to the origin. For this we used two different
approaches: the center of a character was defined either by its 'Mass Center’
(MC) or by its 'Bounding Box Center’ (BBC) [6].

The data formed three independent databases consisting of different writers.
Database 1 consists of 9961 characters from 22 different writers, which were writ-
ten without any visual feedback. The pressure level thresholding of the measured
data into pen up and pen down movements was set afterwards individually for
each writer. The a priori probabilities of the classes were somewhat similar to
that of the Finnish language. Databases 2 and 3 were collected with a program
that showed the pen trace on the screen and recognized the characters online.
They both contain data from eight different writers and a total of 8077 and
8047 characters, respectively. The minimum writing pressure for detecting and
displaying pen down movements was the same for all writers. The distribution
of the character classes was approximately even.

Database 1 was used for forming the initial user-independent prototype set
for the DTW-based member classifiers. The prototype set for the DTW-based
classifiers consisted of seven prototypes per class. Database 2 was used for eval-
uating the values for the necessary numeric parameters for the committee and
determining the performance rankings of the classifiers. Database 3 was used
as a test set. The configurations and corresponding error rates of the member
classifiers are shown in Table 1. For experiments with the triangular kernel, the
decay parameter was set to A = 0.26 for the product, sum and maz rules and
A = 0.08 for the min rule. Similarly, for the Gaussian kernel the decay parameter
was set to A = 0.27 and A = 0.10, respectively. The kernel bandwidth for both
kernel types was in all cases set to b = 0.4.



The data is ordered so that all samples from one writer are processed before
moving on to the next writer. The adaptive critics are not reinitialized in between
writers, so the committee works in a writer-independent fashion.

4 Results

This preliminary set of experiments examines the two applied distribution types
used in conjunction with the four weighting schemes presented. The results ob-
tained with all the four combination rules are shown in Table 2. As can be seen,
the triangular kernel performs slightly better than the Gaussian kernel for all
the combinations. The results using the constant weighting scheme of both the
triangular and Gaussian kernel functions seem somewhat disappointing, as they
are outperformed by the respective member classifiers. This was however to be
expected, as the distribution models strive to model all input data, and with
several different subjects providing the data, the distribution estimate collected
from the previous writers may well be suboptimal for the new writer.

Robustness with respect to the changing environment is clearly much bet-
ter obtained by including the use of the weighting schemes. With the product
and sum rules, the accuracies obtained with the most effective decaying scheme
clearly outperform those of the member classifiers. The class-independent and
class-dependent schemes perform on roughly the same level. In all cases they
provide improvement over the situation where no weighting scheme is used, but
less than the decaying weights scheme. The decaying approach is clearly the
most effective one, suggesting that using only a subset consisting of 1/\ most
recent samples is more effective in modeling the classifier’s performance than
using all available data for the distribution estimates. In these experiments 1/A
corresponded to between five and ten most recent samples.

It can also be noted that the two most effective combination methods are the
product and sum rules. This may be due to the fact that the confidences, while
not always satisfying the properties of being a valid probability, share many of
the characteristics of probability values and are modeled in a similar fashion.
Although the classifiers are hardly independent, the product rule seems to be
effective. Furthermore the product and sum rules take the results from all the
classifiers and their confidences from the critics into account when making the
decision. The min rule can also be seen as trusting the most doubtful critic,
which, although risk minimization in a way, clearly is not the optimal scheme.
Also the maz rule trusts a single critic, the most confident one, for the decision
making process. In its greediness this appears to be the least beneficial strategy.

5 Conclusions

This paper has presented a scheme for calculating adaptive confidence values
from member classifiers’ distance values. A distribution model that estimates
the member classifiers’ performance based not only on their performance for the
sample being processed, but also learning from prior samples was suggested. In



Table 2. Experiment results with different weighting schemes and decision methods

Distribution model Weight scheme Product rule Sum rule Min rule Max rule
Triangular kernel — Constant 75.07% 74.36%  73.89%  72.28%
Triangular kernel — Class-independent  76.07% 75.22%  74.70%  72.40%
Triangular kernel  Class-dependent 76.06% 75.85%  74.65%  72.98%
Triangular kernel — Decay 81.48% 80.78%  78.65%  73.48%
Gaussian kernel Constant 70.61% 69.91% 71.88% 71.69%
Gaussian kernel Class-independent 71.13% 70.21%  72.01%  71.34%
Gaussian kernel Class-dependent 71.50% 70.86%  71.90%  72.06%
Gaussian kernel Decay 80.60% 79.92% 78.38% 73.31%

the presented approach a weighting scheme forcing the distributions to empha-
size most recent samples is used to enhance robustness. This two-staged adaptive
confidence evaluation scheme should provide an effective balance between learn-
ing from prior samples and being robust with respect to changes in the member
classifiers’ performances.

Some preliminary results were presented using two types of kernel functions
for constructing the distance distribution models and three weighting schemes
to provide robustness. These were applied in an experiment where handwrit-
ten character data was recognized. The results clearly showed that the applied
scheme can improve upon the results of the member classifiers and that the
weighting greatly enhances performance. Especially the decaying weights scheme,
where the weight of the samples in the distribution model decays linearly to zero,
was found to be effective. This suggests that estimating the confidence of a clas-
sifier based on a subset consisting of the newest prior results may be a very
effective strategy.
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