INDOOR LOCATION RECOGNITION USING FUSION OF SVM-BASED VISUAL
CLASSIFIERS

Mats Sjoberg, Markus Koskela, Ville Viitaniemi, Jorma Laaksonen

Adaptive Informatics Research Centre
Aalto University School of Science and Technology
P.O. Box 15400, FI-00076 Aalto, Finland
firstname.lastname @tkk.fi

ABSTRACT

We apply our general-purpose algorithm for visual category
recognition using bag-of-visual-words and other visual fea-
tures and fusion of SVM classifiers to the recognition of
indoor locations. This is an important application in many
emerging fields, such as mobile augmented reality and au-
tonomous robots. We evaluate the proposed method with
other location recognition systems in the ImageCLEF 2010
RobotVision contest. The results show that given a large
enough training set, a purely appearance-based method can
perform very well — ranked first for one of the contest’s
training sets.

1. INTRODUCTION

Visual category recognition has recently attracted a lot of at-
tention in the computer vision research community. This is
largely due to the emergence and success of bag-of-features
approaches, in which objects and scenes are represented as
unordered sets of feature descriptors. A popular technique
is to extract a set of local image descriptors and represent
these image-wise descriptors as histograms via clustering.
These are known as bag-of-visual-words (BoV) methods, in
analogy to the bag-of-words approach in textual information
retrieval [1].

For building detectors for visual categories, Support
Vector Machines (SVMs) can be considered as the current
de facto standard. The basic SVM is a binary classi-
fier, but there are several approaches to extend SVMs for
multi-class classification. The most common approaches
are one-versus-the-rest and one-versus-one or pairwise
classification. In the former one trains a binary classifier
for each class taking all the other classes as negative ex-
amples, while in the latter the system learns to separate
each possible pair of classes. In any non-trivial case the
one-versus-one approach requires many more classifiers
than the one-versus-the-rest approach, however the binary
problems are substantially smaller.
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Fig. 1. General architecture for predicting location L based
on a camera view.

Indoor localisation is a fundamental task for au-
tonomous robots [2, 3]. A number of different approaches
have been proposed, but arguably the prevailing method is
to combine camera-based visual information to some addi-
tional input modalities [4, 5], such as laser range sensors,
sonar, stereo vision, temporal continuity, odometry, and
floorplan of the environment. In addition to location cate-
gory recognition, an alternative vision-based method is to
match the query image directly to the images in the training
set, using e.g. pairwise matching of interest points [6].

In this paper, we apply our general-purpose algorithm
for visual category recognition using low-level features and
SVMs [7] to the classification of indoor locations. The only
modality we consider in this work is the current view from
one or more forward-pointing cameras. In addition to au-
tonomous robots, this kind of setup arises, for example, in
many applications of mobile augmented reality [8]. In fact,
indoor localisation constitutes also one of the sub-tasks in
the development of our research platform for accessing ab-
stract information in real-world environments through aug-
mented reality displays [9]. We evaluate our method by
comparing with the state-of-the-art systems taking part in
the ImageCLEF@ICPR 2010 RobotVision contest'.

Fig. 1 illustrates our approach. Given training images
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with location labels, we first train a separate detector for
each location L;. Section 2 describes these single-location
detectors that employ fusion of several SVM detectors, each
based on a different visual feature. The probabilistic out-
comes of the detectors are then used in Section 3 as inputs to
multi-class classification step that determines the final loca-
tion label L for a test image. L is one of the known locations
L;. Alternatively, the system can predict that the image is
taken in a novel unknown location, or declare the location
to be uncertain.

In Section 4 we describe our experiments in RobotVi-
sion 2010 and summarise the results. Finally, conclusions
are drawn in Section 5.

2. SINGLE-LOCATION DETECTORS

For detecting a single location L;, our system employs the
architecture illustrated in Fig. 2. The training phase begins
with the extraction of a large set of low-level visual fea-
tures. The features and binary location labels of the train-
ing images (L; or non-L;) are then used to train a set of
probabilistic two-class SVM classifiers. A separate SVM
is trained for each visual feature. The training images are
also used in a supervised fusion stage for combining the
outcomes of the SVM detectors.
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After training, the detector can estimate the probability
of a novel test image depicting location L;. This is achieved
by first extracting the same set of visual features from the
test image that were extracted from the training images. The
trained feature-wise SVM detectors produce a set of proba-
bility estimates that are combined to a final probability esti-
mate in a fusion stage. The location-wise estimates are then
combined in a multi-class classification stage to determine
the location of the test image.

2.1. Feature extraction

From each image, a set of low-level visual features are ex-
tracted. We use our own implementations of the following
MPEG-7 features: Color Layout, Dominant Color, Scal-
able Color, and Edge Histogram. Furthermore, we employ

some additional features, viz. Average Color, Color Mo-
ments, Texture Neighbourhood, Edge Histogram, Edge Co-
occurrence and Edge Fourier. These features are described
in more detail in [7].

Eight different bag-of-visual-words (BoV) features have
also been extracted. In the BoV model images are repre-
sented by histograms of local image features. The features
result from combining three independent design choices.
First, we use either the SIFT [10] or the opponent color
space version of the Color SIFT [11] descriptor. Second,
we employ either the Harris-Laplace detector or use dense
sampling of points as the interest point detector. For some
of the features, we have additonally used the spatial pyra-
mid extension of the BoV model. Third, we optionally use
soft-histogram refinement of the BoV codebooks [11].

2.2. Feature-wise detectors

In our location recognition system, the association between
an image’s visual features and its location is learned using
the SVM supervised learning algorithm. The SVM imple-
mentation we use in our system is an adaptation of the C-
SVC classifier of the LIBSVM? software library. For all
histogram-like visual features we employ the x? kernel
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The radial basis function (RBF) SVM kernel
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is used for all the other features. The motivation for this
is the well-known empirical observation that x? distance is
well-suited for comparing histograms.

The free parameters of the SVMs are selected with an
approximate 10-fold cross-validation search procedure that
consists of a heuristic line search to identify a promising
parameter region, followed by a grid search in that region.
To speed up the computation, the data set is radically down-
sampled for the parameter search phase. Further speed-up
is gained by optimising the C-SVC cost function only very
approximately during the search.

For the final detectors we also downsample the data set,
but less radically than in the parameter search phase. Usu-
ally there are much fewer annotated example shots of a lo-
cation (positive examples) than there are example shots not
exhibiting that location (negative examples). Consequently,
for most of the locations, the sampling is able to retain all
the positive examples and just limit the number of negative
examples. The exact amount of applied sampling varies ac-
cording to the computation resources available and the re-
quired accuracy of the outputs. Generally we have observed
the downsampling to degrade detection accuracy.

Zhttp://www.csie.ntu.edu.tw/ cjlin/libsvm



2.3. Fusion

The supervised fusion stage of our location recognition sys-
tem is based on the geometric mean of feature-wise detec-
tor outcomes. However, instead of calculating the mean of
all feature-wise detectors we select the set using sequen-
tial forward-backward search (SFBS). This supervised vari-
able selection technique requires detector outcomes also for
training images. These outcomes are obtained via 10-fold
cross-validation.

Our search technique refines the basic SFBS approach
by partitioning the training set into multiple folds. In our
implementation we have used a fixed number of six folds.
The SFBS algorithm is run several times, each time leaving
one fold outside the training set. The final fusion outcome
is the geometric mean of the fold-wise geometric means.

3. MULTI-CLASS CLASSIFICATION

The fusion of the feature-wise detector scores described in
the previous section provides probability estimates for each
location given a particular image. The final classification
step is a traditional multi-class classification, where we
combine several one-versus-the-rest SVM classifiers. The
straightforward solution is to classify the image to the class
with the highest probability estimate.

Howeyver, in the RobotVision scenario, we must also be
able to detect unknown categories, i.e. images of new loca-
tions that have not been seen before. We have implemented
this by tresholding; if all probability estimates are below a
given threshold, the location is considered unknown. Fur-
thermore it is possible to decline classification entirely for a
particular image if we cannot determine the class with high
confidence.

4. EXPERIMENTS

4.1. RobotVision competition

In the ImageCLEF RobotVision competition setting, there is
a real mobile robot moving through an office environment
and the recognition system should be able to answer the
simple question “where are you?” when presented with a
new sequence of camera images aquired by the robot. In the
competition, the participants were asked to classify rooms
and areas in a sequence captured at 5 fps by a mounted
stereo camera rig.

Two training datasets (easy and hard) and a validation
set, all from the COLD-Stockholm database [12], were re-
leased in connection with the competition. All these three
sets contain a total of nine locations shown with example
images in Fig. 3. The easy training set (4074 frame pairs)
differs from the hard one (2267 frame pairs) by showing
each location from multiple points and angles, thus giving

more training data for each location. Furthermore the hard
set was acquired by driving in the opposite direction from
all the other sets.

Both easy and hard training sets were acquired during
the day, with cloudy weather outside. The validation set was
created under similar conditions as the easy set, but during
the night. In addition to changing illumination, variations
in the visual scene were also caused by people or various
objects being variably present or absent. The test sequence
has 2551 frame pairs of the same locations as the training
sequence plus four previously unseen locations.

The system was expected to be trained and evaluated
on both training sets separately. Each test frame pair is to
be assigned to a known location or as “unknown”, or the
system can refrain from making a classification. A score
of +1.0 is awarded for each correctly classified frame. A
misclassification is scored —0.5 and no score is given for
unclassified frames. The final result of a run is the sum of
the scores for the easy and hard sets.

In the obligatory part of the competition, the recognition
system was allowed to use only the current pair of frames
for the classification. In addition, it was optional to sub-
mit results using the whole sequence seen until the frame
in question so that the temporal continuity of the sequence
could be utilised. In this paper we, however, consider only
the instantaneous case.

4.2. Recognition with stereo images

In the RobotVision setup, the presence of a stereo image
pair demands some additional considerations. We may e.g.
learn an independent model for each camera or use all im-
ages as common training data discarding the left/right dis-
tinction. The stereo image pair could also be utilised for
stereo imaging, and depth information would undoubtedly
be an useful feature for location recognition. In fact, the
contest organisers provided the camera calibration data for
the image sequences.

In our work, we are however focusing mainly on monoc-
ular camera recognition, so we ignore the stereo informa-
tion. Instead, we experiment with using the two cameras
separately, with averaging their detection results, and with
using images from both cameras to train a single detector
for each location.

4.3. Parameter selection

As discussed in Section 3, the final recognition result is ob-
tained by selecting the location with the highest detector
score from the single-location detectors. However, if all
scores are below a given threshold, the frame is then as-
signed to the “unknown” location. This threshold was ob-
tained by optimising the performance score in the validation
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Fig. 3. The nine known locations in the training set.

set. We also experimented with a second threshold to de-
cline from classification when the two highest scores were
too similar. However, this did not change the results signif-
icantly, and is not included in the results presented here.

Because the testing set included four unknown locations
(out of 13), we simulated this situation in training by con-
sidering three random locations (roughly the same ratio of
unseen to seen) as unknown and use this setup when deter-
mining the thresholds.

4.4. Results

We submitted a total of eight runs to the RobotVision con-
test with the group name “PicSOM TKK”. Our best sub-
mitted result for the easy set received a score of 2176.0,
which is 85% of the best possible score. This result was
based on detectors trained on the left camera data only, and
it obtained the overall highest score in the competition in
the obligatory task (i.e. the instantaneous case). The same
setup achieved our best result (1117.0) for the hard set as
well. Fig. 4 visualises this run compared to the ground truth.
For the hard set, our result was slightly above the median of
the submitted results using the hard training data. The over-
all best submitted run to the hard set was 1777.0. The best
submitted results for all participating groups are shown in
Fig. 5 for the two training sets, and the overall score. The
overall score in the competition is the sum of the score from
the easy and the hard sets.

Some of our submitted runs and also some additional
runs are summarised in Table 1, with “e” denoting that the
run was submitted to the competition. The additional runs
could be performed as the participants were given access to
the class labels for the testing dataset after the competition.
The first column in the table specifies how the training data
was selected with regard to the cameras. The word “sep-
arate” indicates that separate models were trained for each

camera and then averaged, while “both” uses all images to
train a single model. The second column states whether
fusion of single-feature classifiers (Section 2.3) or just the
single best performing feature (ColorSIFT with dense sam-
pling, soft clustering with a spatial pyramid) is used.

Somewhat surprisingly, using information from both
cameras does not improve the results, in fact using a single
camera works better than using a single model trained on
all images. This difference is especially notable on the hard
training set. Also, using the separate left and right mod-
els together gives no improvement over using just one of
them. This result cannot be explained with poor parameter
selection; after the competition we also tried to optimise
the thresholds in the test set directly (not shown here) but
with similar results. Furthermore, we observed that such
optimised results are only slightly better than the submitted
ones, indicating that the system performance is not very
sensitive to the threshold parameters.

Finally, in Table 1 we can also see that the feature fusion
is highly beneficial: with a single well-performing feature
the results are significantly weaker.

Table 1. RobotVision recognition scores.

cameras features easy hard total
eleftonly  fusion 2176.0 1117.0 3293.0
right only  fusion 2210.5 1072.0 32825
separate fusion 2207.5 1057.0 3264.5
e both fusion  2065.0 665.5 2730.5
e both single 964.0 5545 15185

5. CONCLUSIONS

Our results indicate that a general-purpose algorithm for
visual category recognition can perform well on indoor lo-
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cation recognition, given that enough training data is avail-
able. The generality of our approach is illustrated e.g. by
its successful application to image and video retrieval [7].
However, with limited training data the performance of a
purely appearance-based method is less competitive. There
are several possible explanations for this. It might be that
the generic scene appearance features utilise the limited
training data uneconomically and other domain-specific
modalities would be needed to make best use of the scarce
training examples. For location recognition, these could
include the depth information, the temporal continuity
of the frame sequence, and using image-matching-based
techniques.

Yet, it is also possible that better performance could be
achieved on basis of the generic appearance features by bet-
ter system design. In particular, there might be some over-
learning issues. With the larger training set, just memoris-
ing all the camera views appearing in the training material
might be a viable strategy, whereas the smaller training set
calls for generalising between views. A naive use (such as
here) of a rich and distinctive scene representation might
actually lead to worse performance than a feature extraction
scheme with more limited distinguishing power if the inter-
view generalisation issue is not properly taken care of. Our
experiments reported here are insufficient to confirm either
one of these hypotheses.

Furthermore, the results confirm our earlier findings that
fusion of a large set of visual features can consistently result
in a much better category recognition accuracy than the use
of any single feature.
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