next up previous contents
Next: Expectation-maximisation algorithm Up: Approximations Previous: Point estimates   Contents


The Laplace approximation

Compared to the point estimates, a more accurate way to approximate the integrals in Equations (2.2), (2.3), and (2.4) is to use the Laplace approximation (see MacKay, 2003; Bishop, 1995). The basic idea is to find the maximum of the function to be integrated and apply a second order Taylor series approximation for the logarithm of that function. In case of computing an expectation over the posterior distribution, the maximum is the MAP solution and the second order Taylor series corresponds to a Gaussian distribution for which integrals can be computed analytically. The Laplace approximation can be used to select the best solution in case several local maxima have been found since a broad peak is preferred over a high but narrow peak. Unfortunately the Laplace approximation does not help in situations where a good representative of the probability mass is not a local maximum, like in Figure 2.3.

Laplace approximation can be used to compare different model structures successfully. It can be further simplified by retaining only the terms that grow with the number of data samples. This is known as the Bayesian information criterion (BIC) by Schwarz (1978). Publication IX uses BIC in structural learning of logical hidden Markov models.


next up previous contents
Next: Expectation-maximisation algorithm Up: Approximations Previous: Point estimates   Contents
Tapani Raiko 2006-11-21